A266481
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 5, 55, 993, 25501, 857773, 35850795, 1795564865, 104972371417, 7022842421301, 529428563641759, 44421725002096225, 4106744812439019765, 414834196219620026333, 45462732300569936279251, 5373006006732947705188737, 681229881246574750274962225, 92237589983019368975021777125, 13283769418970268811752725081607, 2027649185923009220298941142143201, 326999803592314489529958494308640461, 55558592280735155060861740192416874125
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 993*x^4/4! + 25501*x^5/5! + 857773*x^6/6! + 35850795*x^7/7! + 1795564865*x^8/8! + 104972371417*x^9/9! + 7022842421301*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^2*(x/N) + (N+2)^4*(x/N)^2/2! + (N+3)^6*(x/N)^3/3! + (N+4)^8*(x/N)^4/4! + (N+5)^10*(x/N)^5/5! + (N+6)^12*(x/N)^6/6! +...]^(1/N).
RELATED SERIES.
The following limit exists:
G(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ] / A(x)^N
where
G(x) = 1 + 2*x + 22*x^2/2! + 432*x^3/3! + 12220*x^4/4! + 451480*x^5/5! + 20591784*x^6/6! + 1117635008*x^7/7! + 70348179472*x^8/8! + 5037843612960*x^9/9! + 404453425948000*x^10/10! +...+ A266522(n)*x^n/n! +...
Logarithm of the g.f. A(x) begins:
Log(A(x)) = x + 4*x^2/2! + 42*x^3/3! + 752*x^4/4! + 19360*x^5/5! + 654912*x^6/6! + 27546736*x^7/7! + 1388207872*x^8/8! + 81621893376*x^9/9! + 5488951731200*x^10/10! +...+ A266526(n)*x^n/n! +...
and forms a diagonal in the triangles A266521 and A266488.
-
{A266526(n) = n! * polcoeff( polcoeff( log( sum(m=0,n+1, (m + y)^(2*m) *x^m/m! ) +x*O(x^n) ),n,x), n+1,y)}
{a(n) = n! * polcoeff( exp( sum(m=1,n+1, A266526(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
-
/* Informal listing of terms 0..30 */
\p100
P(n) = sum(k=0,31, (n+k)^(2*k) * x^k/k! +O(x^31))
Vec(round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
A266483
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(4*n) * (x/N^3)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 9, 205, 8033, 456561, 34307545, 3219222301, 363018204225, 47866764942721, 7230829461286121, 1231746006983485005, 233652055492688836129, 48852757000944980067505, 11163401061821489604439737, 2768164393136241898192002781, 740339555234437428570144337025, 212438189627800855103688740374401, 65104233055709355841104275116309705, 21223353839635626633833547837080498509, 7333306933167926737746819644785091452641
Offset: 0
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 205*x^3/3! + 8033*x^4/4! + 456561*x^5/5! + 34307545*x^6/6! + 3219222301*x^7/7! + 363018204225*x^8/8! + 47866764942721*x^9/9! + 7230829461286121*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^4*(x/N^3) + (N+2)^8*(x/N^3)^2/2! + (N+3)^12*(x/N^3)^3/3! + (N+4)^16*(x/N^3)^4/4! + (N+5)^20*(x/N^3)^5/5! + (N+6)^24*(x/N^3)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p400
P(n) = sum(k=0,32, (n+k)^(4*k) * x^k/k! +O(x^32))
Vec(round(serlaplace( subst(P(10^100)^(1/10^100),x,x/10^300) )*1.) )
-
/* Using logarithmic formual */
{L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(4*m) *x^m/m! ) +x*O(x^n) ), n, x), 3*n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 29 2023
A266484
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 11, 316, 15741, 1140376, 109350271, 13100626176, 1886686497401, 317762099341696, 61318533545522451, 13343942849386863616, 3233753469962945660341, 863794149132594286734336, 252178372791563562485494151, 79890921514691257167186558976, 27298165065421976828646695794161, 10007689235634878438090676073824256, 3918413783588692571816707646546345371, 1631982989611299844119224469019967225856, 720447625733586591482575137323090206302701
Offset: 0
E.g.f.: A(x) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + 317762099341696*x^9/9! + 61318533545522451*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^5*(x/N^4) + (N+2)^10*(x/N^4)^2/2! + (N+3)^15*(x/N^4)^3/3! + (N+4)^20*(x/N^4)^4/4! + (N+5)^25*(x/N^4)^5/5! + (N+6)^30*(x/N^4)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p500
P(n) = sum(k=0,32, (n+k)^(5*k) * x^k/k! +O(x^32))
Vec(round(serlaplace( subst(P(10^100)^(1/10^100),x,x/10^400) )*1.) )
-
/* Using logarithmic formula */
{L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(5*m) *x^m/m! ) +x*O(x^n) ), n, x), 4*n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 29 2023
A266485
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 9, 193, 6929, 356001, 24004825, 2012327521, 202156421409, 23701550853313, 3179302948594601, 480443117415138945, 80788534008942735409, 14965275494082095616097, 3028424508967743713615481, 664790043100841638943719201, 157352199248412053285546165825, 39950540529265571984889165180801
Offset: 0
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 193*x^3/3! + 6929*x^4/4! + 356001*x^5/5! + 24004825*x^6/6! + 2012327521*x^7/7! + 202156421409*x^8/8! + 23701550853313*x^9/9! + 3179302948594601*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+2)^2*(x/N) + (N+4)^4*(x/N)^2/2! + (N+6)^6*(x/N)^3/3! + (N+8)^8*(x/N)^4/4! + (N+10)^10*(x/N)^5/5! + (N+12)^12*(x/N)^6/6! +...]^(1/N).
The logarithm of the g.f. A(x) begins (_Paul D. Hanna_, Jan 20 2023):
(a) log(A(x)) = x + 8*x^2/2! + 168*x^3/3! + 6016*x^4/4! + 309760*x^5/5! + 20957184*x^6/6! + 1762991104*x^7/7! + 177690607616*x^8/8! + ... + A359926(n)*x^n/n! + ...
where A359926(n) = [x^n*y^(n+1)/n!] (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! );
that is, the coefficient of x^n/n! in the logarithm of e.g.f A(x) equals the coefficient of y^(n+1)*x^n/n! in the series given by
(b) (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! ) = (y^2 + y + 1/4)*x + (8*y^3 + 18*y^2 + 14*y + 15/4)*x^2/2! + (168*y^4 + 632*y^3 + 933*y^2 + 639*y + 683/4)*x^3/3! + (6016*y^5 + 33088*y^4 + 76480*y^3 + 92680*y^2 + 58720*y + 31019/2)*x^4/4! + ...
Cf.
A266481,
A266482,
A266483,
A266484,
A266486,
A266487,
A359926,
A359927,
A319147,
A318633,
A319834.
-
/* Informal listing of terms 0..30 */
\p300
P(n) = sum(k=0,32, (n+2*k)^(2*k) * x^k/k! +O(x^31))
Vec( round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
-
/* Using formula for the logarithm of g.f. A(x) Paul D. Hanna, Jan 20 2023 */
{L(n) = (1/4) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + 2*y)^(2*m) *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
A266486
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + 3*n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 13, 415, 22321, 1721101, 174252997, 21935478979, 3308902366945, 582483654850105, 117302814498577501, 26610247617703733479, 6716634535536518884177, 1867456548257171896034245, 567177496490226897535216405, 186852683125922747089699211851, 66371163246016212237620717414593, 25287323016605747194753141853886961, 10287301449354981886046538248627595565, 4450859089975905722184296672608494825775, 2040775907870521098252331495354110194770801
Offset: 0
E.g.f.: A(x) = 1 + x + 13*x^2/2! + 415*x^3/3! + 22321*x^4/4! + 1721101*x^5/5! + 174252997*x^6/6! + 21935478979*x^7/7! + 3308902366945*x^8/8! + 582483654850105*x^9/9! + 117302814498577501*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+3)^2*(x/N) + (N+6)^4*(x/N)^2/2! + (N+9)^6*(x/N)^3/3! + (N+12)^8*(x/N)^4/4! + (N+15)^10*(x/N)^5/5! + (N+18)^12*(x/N)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p300
P(n) = sum(k=0,32, (n+3*k)^(2*k) * x^k/k! +O(x^32))
Vec( round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
A266487
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N - n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, -3, 31, -559, 14541, -496811, 21081859, -1070585055, 63366015673, -4285932328819, 326248732427751, -27610580638457807, 2572239828612623365, -261621661000490429211, 28849626308051995285771, -3428690784657696770593471, 436924188109882619766249201, -59432725217403244945921112675, 8595527924368773785463788378287, -1317123285394547040368548520041839, 213171869078193696050387803319525821, -36338236299957647745418230431675850763, 6507698606647750492700809995200106342675, -1221579456277487714539848255959245396739999
Offset: 0
E.g.f.: A(x) = 1 + x - 3*x^2/2! + 31*x^3/3! - 559*x^4/4! + 14541*x^5/5! - 496811*x^6/6! + 21081859*x^7/7! - 1070585055*x^8/8! + 63366015673*x^9/9! - 4285932328819*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N-1)^2*(x/N) + (N-2)^4*(x/N)^2/2! + (N-3)^6*(x/N)^3/3! + (N-4)^8*(x/N)^4/4! + (N-5)^10*(x/N)^5/5! + (N-6)^12*(x/N)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p300
H(n) = sum(k=0,32, (n - k)^(2*k) * x^k/k! +O(x^32))
Vec( round( serlaplace( subst(H(10^100)^(1/10^100),x,x/10^100) )*1.) )
A266523
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ] / F(x)^N, where F(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N).
Original entry on oeis.org
1, 3, 54, 1737, 80460, 4866075, 363195144, 32252007249, 3320837109648, 388974074329395, 51071746190248800, 7429243977263853657, 1185973466659967427264, 206128694834273499148107, 38747184998101320725389440, 7832602778214436587234950625, 1694328566956587966290832896256, 390523839870137752804243701312099, 95545779571238219801892087161845248, 24730355203857044123269648640967753705, 6751503716745494652518864431722119040000, 1938877409334089151858199776112230794503803
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 54*x^2/2! + 1737*x^3/3! + 80460*x^4/4! + 4866075*x^5/5! + 363195144*x^6/6! + 32252007249*x^7/7! + 3320837109648*x^8/8! + 388974074329395*x^9/9! + 51071746190248800*x^10/10! +...
such that
A(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ] / F(x)^N
where
F(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N)
and
F(x) = 1 + x + 7*x^2/2! + 118*x^3/3! + 3373*x^4/4! + 139096*x^5/5! + 7565779*x^6/6! + 513277024*x^7/7! + 41820455065*x^8/8! + 3982842285184*x^9/9! + 434457816912991*x^10/10! +...+ A266482(n)*x^n/n! +...
A360339
a(n) = coefficient of x^n*y^(2*n+1)/n! in log( Sum_{n>=0} (n + y)^(3*n) * x^n/n! ).
Original entry on oeis.org
1, 6, 99, 2832, 117405, 6423408, 438143391, 35869775616, 3430351996569, 375544727136000, 46333978359977979, 6362713275564589056, 962689133095843525749, 159139760744994666835968, 28539360163037720058960375, 5518961894002049077780611072, 1144859158421455331276272257201
Offset: 1
E.g.f.: A(x) = x + 6*x^2/2! + 99*x^3/3! + 2832*x^4/4! + 117405*x^5/5! + 6423408*x^6/6! + 438143391*x^7/7! + 35869775616*x^8/8! + ... + a(n)*x^n/n! + ...
where a(n) equals the coefficient of y^(2*n+1)*x^n/n! in the series given by
log( Sum_{n>=0} (n + y)^(3*n) * x^n/n! ) = (y^3 + 3*y^2 + 3*y + 1)*x + (6*y^5 + 45*y^4 + 140*y^3 + 225*y^2 + 186*y + 63)*x^2/2! + (99*y^7 + 1305*y^6 + 7722*y^5 + 26514*y^4 + 56844*y^3 + 75780*y^2 + 57915*y + 19493)*x^3/3! + (2832*y^9 + 56214*y^8 + 521784*y^7 + 2965716*y^6 + 11339280*y^5 + 30131946*y^4 + 55424512*y^3 + 67771380*y^2 + 49792368*y + 16686958)*x^4/4! + (117405*y^11 + 3214647*y^10 + 42201705*y^9 + 349928235*y^8 + 2030468625*y^7 + 8627152275*y^6 + 27284511927*y^5 + 63980788365*y^4 + 108602299435*y^3 + 126629082945*y^2 + 90978438315*y + 30421607649)*x^5/5! + ...
Exponentiation yields the e.g.f. of A266482:
exp(A(x)) = 1 + x + 7*x^2/2! + 118*x^3/3! + 3373*x^4/4! + 139096*x^5/5! + 7565779*x^6/6! + 513277024*x^7/7! + 41820455065*x^8/8! + 3982842285184*x^9/9! + 434457816912991*x^10/10! + ... + A266483(n)*x^n/n! + ...
which equals
lim_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N).
RELATED SEQUENCES.
a(n) is divisible by n where a(n)/n begins:
[1, 3, 33, 708, 23481, 1070568, 62591913, 4483721952, ...].
-
/* Using logarithmic formula */
{a(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(3*m) *x^m/m! ) +x*O(x^n) ), n, x), 2*n+1, y)}
for(n=1, 20, print1(a(n), ", "))
A266488
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 0, 1, 4, 0, 1, 12, 42, 0, 1, 24, 216, 752, 0, 1, 40, 660, 5440, 19360, 0, 1, 60, 1560, 22320, 178920, 654912, 0, 1, 84, 3150, 68320, 916440, 7316064, 27546736, 0, 1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0, 1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0, 1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0
Offset: 0
E.g.f. A(x) = 1 + x +
x^2/2! * (1 + 4*y) +
x^3/3! * (1 + 12*y + 42*y^2) +
x^4/4! * (1 + 24*y + 216*y^2 + 752*y^3) +
x^5/5! * (1 + 40*y + 660*y^2 + 5440*y^3 + 19360*y^4) +
x^6/6! * (1 + 60*y + 1560*y^2 + 22320*y^3 + 178920*y^4 + 654912*y^5) +
x^7/7! * (1 + 84*y + 3150*y^2 + 68320*y^3 + 916440*y^4 + 7316064*y^5 + 27546736*y^6) +
x^8/8! * (1 + 112*y + 5712*y^2 + 173600*y^3 + 3432800*y^4 + 44693376*y^5 + 359051392*y^6 + 1388207872*y^7) + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N + y)^2*(x/N) + (N + 2*y)^4*(x/N)^2/2! + (N + 3*y)^6*(x/N)^3/3! + (N + 4*y)^8*(x/N)^4/4! + (N + 5*y)^10*(x/N)^5/5! + (N + 6*y)^12*(x/N)^6/6! +...]^(1/N).
Triangle of coefficients T(n,k) of x^n*y^k/n!, n>=0, k=0..n, begins:
1;
1, 0;
1, 4, 0;
1, 12, 42, 0;
1, 24, 216, 752, 0;
1, 40, 660, 5440, 19360, 0;
1, 60, 1560, 22320, 178920, 654912, 0;
1, 84, 3150, 68320, 916440, 7316064, 27546736, 0;
1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0;
1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0;
1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0;
1, 220, 22770, 1467840, 65659440, 2143842624, 52117998240, 938463651840, 12065358919680, 100649306644480, 415721105434624, 0; ...
-
/* Print the initial rows of this triangle: */
\p400
P(n) = sum(k=0, 21, (n + k*y)^(2*k) * (x/n)^k/k! +O(x^21))
V=Vec( round( serlaplace( P(10^100)^(1/10^100) )*1.) )
for(n=1,15,print(Vec(V[n]+O(y^n))))
Showing 1-9 of 9 results.
Comments