A266481
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 5, 55, 993, 25501, 857773, 35850795, 1795564865, 104972371417, 7022842421301, 529428563641759, 44421725002096225, 4106744812439019765, 414834196219620026333, 45462732300569936279251, 5373006006732947705188737, 681229881246574750274962225, 92237589983019368975021777125, 13283769418970268811752725081607, 2027649185923009220298941142143201, 326999803592314489529958494308640461, 55558592280735155060861740192416874125
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 993*x^4/4! + 25501*x^5/5! + 857773*x^6/6! + 35850795*x^7/7! + 1795564865*x^8/8! + 104972371417*x^9/9! + 7022842421301*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^2*(x/N) + (N+2)^4*(x/N)^2/2! + (N+3)^6*(x/N)^3/3! + (N+4)^8*(x/N)^4/4! + (N+5)^10*(x/N)^5/5! + (N+6)^12*(x/N)^6/6! +...]^(1/N).
RELATED SERIES.
The following limit exists:
G(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ] / A(x)^N
where
G(x) = 1 + 2*x + 22*x^2/2! + 432*x^3/3! + 12220*x^4/4! + 451480*x^5/5! + 20591784*x^6/6! + 1117635008*x^7/7! + 70348179472*x^8/8! + 5037843612960*x^9/9! + 404453425948000*x^10/10! +...+ A266522(n)*x^n/n! +...
Logarithm of the g.f. A(x) begins:
Log(A(x)) = x + 4*x^2/2! + 42*x^3/3! + 752*x^4/4! + 19360*x^5/5! + 654912*x^6/6! + 27546736*x^7/7! + 1388207872*x^8/8! + 81621893376*x^9/9! + 5488951731200*x^10/10! +...+ A266526(n)*x^n/n! +...
and forms a diagonal in the triangles A266521 and A266488.
-
{A266526(n) = n! * polcoeff( polcoeff( log( sum(m=0,n+1, (m + y)^(2*m) *x^m/m! ) +x*O(x^n) ),n,x), n+1,y)}
{a(n) = n! * polcoeff( exp( sum(m=1,n+1, A266526(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
-
/* Informal listing of terms 0..30 */
\p100
P(n) = sum(k=0,31, (n+k)^(2*k) * x^k/k! +O(x^31))
Vec(round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
A266483
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(4*n) * (x/N^3)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 9, 205, 8033, 456561, 34307545, 3219222301, 363018204225, 47866764942721, 7230829461286121, 1231746006983485005, 233652055492688836129, 48852757000944980067505, 11163401061821489604439737, 2768164393136241898192002781, 740339555234437428570144337025, 212438189627800855103688740374401, 65104233055709355841104275116309705, 21223353839635626633833547837080498509, 7333306933167926737746819644785091452641
Offset: 0
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 205*x^3/3! + 8033*x^4/4! + 456561*x^5/5! + 34307545*x^6/6! + 3219222301*x^7/7! + 363018204225*x^8/8! + 47866764942721*x^9/9! + 7230829461286121*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^4*(x/N^3) + (N+2)^8*(x/N^3)^2/2! + (N+3)^12*(x/N^3)^3/3! + (N+4)^16*(x/N^3)^4/4! + (N+5)^20*(x/N^3)^5/5! + (N+6)^24*(x/N^3)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p400
P(n) = sum(k=0,32, (n+k)^(4*k) * x^k/k! +O(x^32))
Vec(round(serlaplace( subst(P(10^100)^(1/10^100),x,x/10^300) )*1.) )
-
/* Using logarithmic formual */
{L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(4*m) *x^m/m! ) +x*O(x^n) ), n, x), 3*n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 29 2023
A266482
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 7, 118, 3373, 139096, 7565779, 513277024, 41820455065, 3982842285184, 434457816912991, 53434112376345856, 7317518431787267653, 1104465712210096168960, 182183636400541105459627, 32609250878782525222260736, 6295153043394143761311198769, 1303848990485145459272159297536, 288415207140946760926622987982775, 67863051757810284274576363569872896, 16924929956887283486906002826128780381, 4459845456377312896416211474995205636096
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 118*x^3/3! + 3373*x^4/4! + 139096*x^5/5! + 7565779*x^6/6! + 513277024*x^7/7! + 41820455065*x^8/8! + 3982842285184*x^9/9! + 434457816912991*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^3*(x/N^2) + (N+2)^6*(x/N^2)^2/2! + (N+3)^9*(x/N^2)^3/3! + (N+4)^12*(x/N^2)^4/4! + (N+5)^15*(x/N^2)^5/5! + (N+6)^18*(x/N^2)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p200
P(n) = sum(k=0, 31, (n+k)^(3*k) * x^k/k! +O(x^31))
Vec(round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^200) )*1.) )
-
{L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(3*m) *x^m/m! ) +x*O(x^n) ), n, x), 2*n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 15 2021
A266484
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 11, 316, 15741, 1140376, 109350271, 13100626176, 1886686497401, 317762099341696, 61318533545522451, 13343942849386863616, 3233753469962945660341, 863794149132594286734336, 252178372791563562485494151, 79890921514691257167186558976, 27298165065421976828646695794161, 10007689235634878438090676073824256, 3918413783588692571816707646546345371, 1631982989611299844119224469019967225856, 720447625733586591482575137323090206302701
Offset: 0
E.g.f.: A(x) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + 317762099341696*x^9/9! + 61318533545522451*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^5*(x/N^4) + (N+2)^10*(x/N^4)^2/2! + (N+3)^15*(x/N^4)^3/3! + (N+4)^20*(x/N^4)^4/4! + (N+5)^25*(x/N^4)^5/5! + (N+6)^30*(x/N^4)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p500
P(n) = sum(k=0,32, (n+k)^(5*k) * x^k/k! +O(x^32))
Vec(round(serlaplace( subst(P(10^100)^(1/10^100),x,x/10^400) )*1.) )
-
/* Using logarithmic formula */
{L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(5*m) *x^m/m! ) +x*O(x^n) ), n, x), 4*n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 29 2023
A266485
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 9, 193, 6929, 356001, 24004825, 2012327521, 202156421409, 23701550853313, 3179302948594601, 480443117415138945, 80788534008942735409, 14965275494082095616097, 3028424508967743713615481, 664790043100841638943719201, 157352199248412053285546165825, 39950540529265571984889165180801
Offset: 0
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 193*x^3/3! + 6929*x^4/4! + 356001*x^5/5! + 24004825*x^6/6! + 2012327521*x^7/7! + 202156421409*x^8/8! + 23701550853313*x^9/9! + 3179302948594601*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+2)^2*(x/N) + (N+4)^4*(x/N)^2/2! + (N+6)^6*(x/N)^3/3! + (N+8)^8*(x/N)^4/4! + (N+10)^10*(x/N)^5/5! + (N+12)^12*(x/N)^6/6! +...]^(1/N).
The logarithm of the g.f. A(x) begins (_Paul D. Hanna_, Jan 20 2023):
(a) log(A(x)) = x + 8*x^2/2! + 168*x^3/3! + 6016*x^4/4! + 309760*x^5/5! + 20957184*x^6/6! + 1762991104*x^7/7! + 177690607616*x^8/8! + ... + A359926(n)*x^n/n! + ...
where A359926(n) = [x^n*y^(n+1)/n!] (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! );
that is, the coefficient of x^n/n! in the logarithm of e.g.f A(x) equals the coefficient of y^(n+1)*x^n/n! in the series given by
(b) (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! ) = (y^2 + y + 1/4)*x + (8*y^3 + 18*y^2 + 14*y + 15/4)*x^2/2! + (168*y^4 + 632*y^3 + 933*y^2 + 639*y + 683/4)*x^3/3! + (6016*y^5 + 33088*y^4 + 76480*y^3 + 92680*y^2 + 58720*y + 31019/2)*x^4/4! + ...
Cf.
A266481,
A266482,
A266483,
A266484,
A266486,
A266487,
A359926,
A359927,
A319147,
A318633,
A319834.
-
/* Informal listing of terms 0..30 */
\p300
P(n) = sum(k=0,32, (n+2*k)^(2*k) * x^k/k! +O(x^31))
Vec( round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
-
/* Using formula for the logarithm of g.f. A(x) Paul D. Hanna, Jan 20 2023 */
{L(n) = (1/4) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + 2*y)^(2*m) *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
A266487
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N - n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, -3, 31, -559, 14541, -496811, 21081859, -1070585055, 63366015673, -4285932328819, 326248732427751, -27610580638457807, 2572239828612623365, -261621661000490429211, 28849626308051995285771, -3428690784657696770593471, 436924188109882619766249201, -59432725217403244945921112675, 8595527924368773785463788378287, -1317123285394547040368548520041839, 213171869078193696050387803319525821, -36338236299957647745418230431675850763, 6507698606647750492700809995200106342675, -1221579456277487714539848255959245396739999
Offset: 0
E.g.f.: A(x) = 1 + x - 3*x^2/2! + 31*x^3/3! - 559*x^4/4! + 14541*x^5/5! - 496811*x^6/6! + 21081859*x^7/7! - 1070585055*x^8/8! + 63366015673*x^9/9! - 4285932328819*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N-1)^2*(x/N) + (N-2)^4*(x/N)^2/2! + (N-3)^6*(x/N)^3/3! + (N-4)^8*(x/N)^4/4! + (N-5)^10*(x/N)^5/5! + (N-6)^12*(x/N)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p300
H(n) = sum(k=0,32, (n - k)^(2*k) * x^k/k! +O(x^32))
Vec( round( serlaplace( subst(H(10^100)^(1/10^100),x,x/10^100) )*1.) )
A266488
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 0, 1, 4, 0, 1, 12, 42, 0, 1, 24, 216, 752, 0, 1, 40, 660, 5440, 19360, 0, 1, 60, 1560, 22320, 178920, 654912, 0, 1, 84, 3150, 68320, 916440, 7316064, 27546736, 0, 1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0, 1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0, 1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0
Offset: 0
E.g.f. A(x) = 1 + x +
x^2/2! * (1 + 4*y) +
x^3/3! * (1 + 12*y + 42*y^2) +
x^4/4! * (1 + 24*y + 216*y^2 + 752*y^3) +
x^5/5! * (1 + 40*y + 660*y^2 + 5440*y^3 + 19360*y^4) +
x^6/6! * (1 + 60*y + 1560*y^2 + 22320*y^3 + 178920*y^4 + 654912*y^5) +
x^7/7! * (1 + 84*y + 3150*y^2 + 68320*y^3 + 916440*y^4 + 7316064*y^5 + 27546736*y^6) +
x^8/8! * (1 + 112*y + 5712*y^2 + 173600*y^3 + 3432800*y^4 + 44693376*y^5 + 359051392*y^6 + 1388207872*y^7) + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N + y)^2*(x/N) + (N + 2*y)^4*(x/N)^2/2! + (N + 3*y)^6*(x/N)^3/3! + (N + 4*y)^8*(x/N)^4/4! + (N + 5*y)^10*(x/N)^5/5! + (N + 6*y)^12*(x/N)^6/6! +...]^(1/N).
Triangle of coefficients T(n,k) of x^n*y^k/n!, n>=0, k=0..n, begins:
1;
1, 0;
1, 4, 0;
1, 12, 42, 0;
1, 24, 216, 752, 0;
1, 40, 660, 5440, 19360, 0;
1, 60, 1560, 22320, 178920, 654912, 0;
1, 84, 3150, 68320, 916440, 7316064, 27546736, 0;
1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0;
1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0;
1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0;
1, 220, 22770, 1467840, 65659440, 2143842624, 52117998240, 938463651840, 12065358919680, 100649306644480, 415721105434624, 0; ...
-
/* Print the initial rows of this triangle: */
\p400
P(n) = sum(k=0, 21, (n + k*y)^(2*k) * (x/n)^k/k! +O(x^21))
V=Vec( round( serlaplace( P(10^100)^(1/10^100) )*1.) )
for(n=1,15,print(Vec(V[n]+O(y^n))))
Showing 1-7 of 7 results.
Comments