A266481
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 5, 55, 993, 25501, 857773, 35850795, 1795564865, 104972371417, 7022842421301, 529428563641759, 44421725002096225, 4106744812439019765, 414834196219620026333, 45462732300569936279251, 5373006006732947705188737, 681229881246574750274962225, 92237589983019368975021777125, 13283769418970268811752725081607, 2027649185923009220298941142143201, 326999803592314489529958494308640461, 55558592280735155060861740192416874125
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 993*x^4/4! + 25501*x^5/5! + 857773*x^6/6! + 35850795*x^7/7! + 1795564865*x^8/8! + 104972371417*x^9/9! + 7022842421301*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^2*(x/N) + (N+2)^4*(x/N)^2/2! + (N+3)^6*(x/N)^3/3! + (N+4)^8*(x/N)^4/4! + (N+5)^10*(x/N)^5/5! + (N+6)^12*(x/N)^6/6! +...]^(1/N).
RELATED SERIES.
The following limit exists:
G(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ] / A(x)^N
where
G(x) = 1 + 2*x + 22*x^2/2! + 432*x^3/3! + 12220*x^4/4! + 451480*x^5/5! + 20591784*x^6/6! + 1117635008*x^7/7! + 70348179472*x^8/8! + 5037843612960*x^9/9! + 404453425948000*x^10/10! +...+ A266522(n)*x^n/n! +...
Logarithm of the g.f. A(x) begins:
Log(A(x)) = x + 4*x^2/2! + 42*x^3/3! + 752*x^4/4! + 19360*x^5/5! + 654912*x^6/6! + 27546736*x^7/7! + 1388207872*x^8/8! + 81621893376*x^9/9! + 5488951731200*x^10/10! +...+ A266526(n)*x^n/n! +...
and forms a diagonal in the triangles A266521 and A266488.
-
{A266526(n) = n! * polcoeff( polcoeff( log( sum(m=0,n+1, (m + y)^(2*m) *x^m/m! ) +x*O(x^n) ),n,x), n+1,y)}
{a(n) = n! * polcoeff( exp( sum(m=1,n+1, A266526(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
-
/* Informal listing of terms 0..30 */
\p100
P(n) = sum(k=0,31, (n+k)^(2*k) * x^k/k! +O(x^31))
Vec(round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
A266483
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(4*n) * (x/N^3)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 9, 205, 8033, 456561, 34307545, 3219222301, 363018204225, 47866764942721, 7230829461286121, 1231746006983485005, 233652055492688836129, 48852757000944980067505, 11163401061821489604439737, 2768164393136241898192002781, 740339555234437428570144337025, 212438189627800855103688740374401, 65104233055709355841104275116309705, 21223353839635626633833547837080498509, 7333306933167926737746819644785091452641
Offset: 0
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 205*x^3/3! + 8033*x^4/4! + 456561*x^5/5! + 34307545*x^6/6! + 3219222301*x^7/7! + 363018204225*x^8/8! + 47866764942721*x^9/9! + 7230829461286121*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^4*(x/N^3) + (N+2)^8*(x/N^3)^2/2! + (N+3)^12*(x/N^3)^3/3! + (N+4)^16*(x/N^3)^4/4! + (N+5)^20*(x/N^3)^5/5! + (N+6)^24*(x/N^3)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p400
P(n) = sum(k=0,32, (n+k)^(4*k) * x^k/k! +O(x^32))
Vec(round(serlaplace( subst(P(10^100)^(1/10^100),x,x/10^300) )*1.) )
-
/* Using logarithmic formual */
{L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(4*m) *x^m/m! ) +x*O(x^n) ), n, x), 3*n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 29 2023
A266482
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 7, 118, 3373, 139096, 7565779, 513277024, 41820455065, 3982842285184, 434457816912991, 53434112376345856, 7317518431787267653, 1104465712210096168960, 182183636400541105459627, 32609250878782525222260736, 6295153043394143761311198769, 1303848990485145459272159297536, 288415207140946760926622987982775, 67863051757810284274576363569872896, 16924929956887283486906002826128780381, 4459845456377312896416211474995205636096
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 118*x^3/3! + 3373*x^4/4! + 139096*x^5/5! + 7565779*x^6/6! + 513277024*x^7/7! + 41820455065*x^8/8! + 3982842285184*x^9/9! + 434457816912991*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^3*(x/N^2) + (N+2)^6*(x/N^2)^2/2! + (N+3)^9*(x/N^2)^3/3! + (N+4)^12*(x/N^2)^4/4! + (N+5)^15*(x/N^2)^5/5! + (N+6)^18*(x/N^2)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p200
P(n) = sum(k=0, 31, (n+k)^(3*k) * x^k/k! +O(x^31))
Vec(round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^200) )*1.) )
-
{L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(3*m) *x^m/m! ) +x*O(x^n) ), n, x), 2*n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 15 2021
A266484
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 11, 316, 15741, 1140376, 109350271, 13100626176, 1886686497401, 317762099341696, 61318533545522451, 13343942849386863616, 3233753469962945660341, 863794149132594286734336, 252178372791563562485494151, 79890921514691257167186558976, 27298165065421976828646695794161, 10007689235634878438090676073824256, 3918413783588692571816707646546345371, 1631982989611299844119224469019967225856, 720447625733586591482575137323090206302701
Offset: 0
E.g.f.: A(x) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + 317762099341696*x^9/9! + 61318533545522451*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^5*(x/N^4) + (N+2)^10*(x/N^4)^2/2! + (N+3)^15*(x/N^4)^3/3! + (N+4)^20*(x/N^4)^4/4! + (N+5)^25*(x/N^4)^5/5! + (N+6)^30*(x/N^4)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p500
P(n) = sum(k=0,32, (n+k)^(5*k) * x^k/k! +O(x^32))
Vec(round(serlaplace( subst(P(10^100)^(1/10^100),x,x/10^400) )*1.) )
-
/* Using logarithmic formula */
{L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(5*m) *x^m/m! ) +x*O(x^n) ), n, x), 4*n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 29 2023
A266486
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + 3*n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 13, 415, 22321, 1721101, 174252997, 21935478979, 3308902366945, 582483654850105, 117302814498577501, 26610247617703733479, 6716634535536518884177, 1867456548257171896034245, 567177496490226897535216405, 186852683125922747089699211851, 66371163246016212237620717414593, 25287323016605747194753141853886961, 10287301449354981886046538248627595565, 4450859089975905722184296672608494825775, 2040775907870521098252331495354110194770801
Offset: 0
E.g.f.: A(x) = 1 + x + 13*x^2/2! + 415*x^3/3! + 22321*x^4/4! + 1721101*x^5/5! + 174252997*x^6/6! + 21935478979*x^7/7! + 3308902366945*x^8/8! + 582483654850105*x^9/9! + 117302814498577501*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+3)^2*(x/N) + (N+6)^4*(x/N)^2/2! + (N+9)^6*(x/N)^3/3! + (N+12)^8*(x/N)^4/4! + (N+15)^10*(x/N)^5/5! + (N+18)^12*(x/N)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p300
P(n) = sum(k=0,32, (n+3*k)^(2*k) * x^k/k! +O(x^32))
Vec( round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
A359926
a(n) = coefficient of x^n*y^(n+1)/n! in (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! ).
Original entry on oeis.org
1, 8, 168, 6016, 309760, 20957184, 1762991104, 177690607616, 20895204704256, 2810343286374400, 425698411965054976, 71735043897868419072, 13313460758336789020672, 2698754565131159025483776, 593332971403056575938560000, 140634107346363806457259884544
Offset: 1
E.g.f. A(x) = x + 8*x^2/2! + 168*x^3/3! + 6016*x^4/4! + 309760*x^5/5! + 20957184*x^6/6! + 1762991104*x^7/7! + 177690607616*x^8/8! + 20895204704256*x^9/9! + 2810343286374400*x^10/10! + ...
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! where a(n) equals the coefficient of y^(n+1)*x^n/n! in the series given by
(1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! ) = (y^2 + y + 1/4)*x + (8*y^3 + 18*y^2 + 14*y + 15/4)*x^2/2! + (168*y^4 + 632*y^3 + 933*y^2 + 639*y + 683/4)*x^3/3! + (6016*y^5 + 33088*y^4 + 76480*y^3 + 92680*y^2 + 58720*y + 31019/2)*x^4/4! + (309760*y^6 + 2304384*y^5 + 7521360*y^4 + 13763280*y^3 + 14855385*y^2 + 8940045*y + 9342629/4)*x^5/5! + (20957184*y^7 + 200377344*y^6 + 865825536*y^5 + 2188392960*y^4 + 3486312960*y^3 + 3490688496*y^2 + 2027376336*y + 525120804)*x^6/6! + ...
Exponentiation yields the e.g.f. of A266485:
exp(A(x)) = 1 + x + 9*x^2/2! + 193*x^3/3! + 6929*x^4/4! + 356001*x^5/5! + 24004825*x^6/6! + 2012327521*x^7/7! + 202156421409*x^8/8! + 23701550853313*x^9/9! + ... + A266485(n)*x^n/n! + ...
which equals
lim_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).
RELATED SEQUENCES.
a(n) is divisible by n where a(n)/n begins:
[1, 4, 56, 1504, 61952, 3492864, 251855872, 22211325952, 2321689411584, ...].
-
{a(n) = (1/4) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + 2*y)^(2*m)*x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
for(n=1, 30, print1(a(n), ", "))
A266487
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N - n)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, -3, 31, -559, 14541, -496811, 21081859, -1070585055, 63366015673, -4285932328819, 326248732427751, -27610580638457807, 2572239828612623365, -261621661000490429211, 28849626308051995285771, -3428690784657696770593471, 436924188109882619766249201, -59432725217403244945921112675, 8595527924368773785463788378287, -1317123285394547040368548520041839, 213171869078193696050387803319525821, -36338236299957647745418230431675850763, 6507698606647750492700809995200106342675, -1221579456277487714539848255959245396739999
Offset: 0
E.g.f.: A(x) = 1 + x - 3*x^2/2! + 31*x^3/3! - 559*x^4/4! + 14541*x^5/5! - 496811*x^6/6! + 21081859*x^7/7! - 1070585055*x^8/8! + 63366015673*x^9/9! - 4285932328819*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N-1)^2*(x/N) + (N-2)^4*(x/N)^2/2! + (N-3)^6*(x/N)^3/3! + (N-4)^8*(x/N)^4/4! + (N-5)^10*(x/N)^5/5! + (N-6)^12*(x/N)^6/6! +...]^(1/N).
-
/* Informal listing of terms 0..30 */
\p300
H(n) = sum(k=0,32, (n - k)^(2*k) * x^k/k! +O(x^32))
Vec( round( serlaplace( subst(H(10^100)^(1/10^100),x,x/10^100) )*1.) )
A359917
E.g.f.: lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n + 2*n^2)^n * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 3, 28, 413, 9216, 268327, 9831424, 432251577, 22259307520, 1313366140331, 87431498993664, 6482838033725077, 529958491541291008, 47356678577690489295, 4592761099982656823296, 480465410003489098874993, 53933291626260492656050176, 6466413087139041540884403667
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 28*x^3/3! + 413*x^4/4! + 9216*x^5/5! + 268327*x^6/6! + 9831424*x^7/7! + 432251577*x^8/8! + 22259307520*x^9/9! + 1313366140331*x^10/10! + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N^2+N+2)*(x/N) + (N^2+2*N+2*2^2)^2*(x/N)^2/2! + (N^2+3*N+2*3^2)^3*(x/N)^3/3! + (N^2+4*N+2*4^2)^4*(x/N)^4/4! + (N^2+5*N+2*5^2)^5*(x/N)^5/5! + (N^2+6*N+2*6^2)^6*(x/N)^6/6! + ...]^(1/N).
RELATED SERIES.
The logarithm of the g.f. A(x) begins:
(a) log(A(x)) = x + 2*x^2/2! + 21*x^3/3! + 304*x^4/4! + 6985*x^5/5! + 205056*x^6/6! + 7607509*x^7/7! + ... + A359918(n)*x^n/n! + ...
where A359918(n) = [x^n*y^(n+1)/n!] (1/2) * log( Sum_{n>=0} (n^2 + n*y + 2*y^2)^n * x^n/n! );
that is, the coefficients in the logarithm of e.g.f A(x) equals the coefficients of y^(n+1)*x^n/n! in the series given by
(b) (1/2) * log( Sum_{n>=0} (n^2 + n*y + 2*y^2)^n * x^n/n! ) = (y^2 + 1/2*y + 1/2)*x + (2*y^3 + 15/2*y^2 + 7*y + 15/2)*x^2/2! + (21*y^4 + 197/2*y^3 + 543/2*y^2 + 639/2*y + 683/2)*x^3/3! + (304*y^5 + 2495*y^4 + 8984*y^3 + 22246*y^2 + 29360*y + 31019)*x^4/4! + (6985*y^6 + 150489/2*y^5 + 817005/2*y^4 + 1335885*y^3 + 3162830*y^2 + 8940045/2*y + 9342629/2)*x^5/5! + (205056*y^7 + 2946228*y^6 + 20587128*y^5 + 94146240*y^4 + 294518400*y^3 + 684700836*y^2 + 1013688168*y + 1050241608)*x^6/6! + ...
-
/* Using formula for the logarithm of g.f. A(x) */
{L(n) = (1/2) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m^2 + m*y + 2*y^2)^m *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
/* Using limit formula */
\p100
P(n) = sum(k=0, 31, (n^2 + n*k + 2*k^2)^k * x^k/k! +O(x^31))
Vec(round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^100) )*1.) )
A266488
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 0, 1, 4, 0, 1, 12, 42, 0, 1, 24, 216, 752, 0, 1, 40, 660, 5440, 19360, 0, 1, 60, 1560, 22320, 178920, 654912, 0, 1, 84, 3150, 68320, 916440, 7316064, 27546736, 0, 1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0, 1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0, 1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0
Offset: 0
E.g.f. A(x) = 1 + x +
x^2/2! * (1 + 4*y) +
x^3/3! * (1 + 12*y + 42*y^2) +
x^4/4! * (1 + 24*y + 216*y^2 + 752*y^3) +
x^5/5! * (1 + 40*y + 660*y^2 + 5440*y^3 + 19360*y^4) +
x^6/6! * (1 + 60*y + 1560*y^2 + 22320*y^3 + 178920*y^4 + 654912*y^5) +
x^7/7! * (1 + 84*y + 3150*y^2 + 68320*y^3 + 916440*y^4 + 7316064*y^5 + 27546736*y^6) +
x^8/8! * (1 + 112*y + 5712*y^2 + 173600*y^3 + 3432800*y^4 + 44693376*y^5 + 359051392*y^6 + 1388207872*y^7) + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N + y)^2*(x/N) + (N + 2*y)^4*(x/N)^2/2! + (N + 3*y)^6*(x/N)^3/3! + (N + 4*y)^8*(x/N)^4/4! + (N + 5*y)^10*(x/N)^5/5! + (N + 6*y)^12*(x/N)^6/6! +...]^(1/N).
Triangle of coefficients T(n,k) of x^n*y^k/n!, n>=0, k=0..n, begins:
1;
1, 0;
1, 4, 0;
1, 12, 42, 0;
1, 24, 216, 752, 0;
1, 40, 660, 5440, 19360, 0;
1, 60, 1560, 22320, 178920, 654912, 0;
1, 84, 3150, 68320, 916440, 7316064, 27546736, 0;
1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0;
1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0;
1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0;
1, 220, 22770, 1467840, 65659440, 2143842624, 52117998240, 938463651840, 12065358919680, 100649306644480, 415721105434624, 0; ...
-
/* Print the initial rows of this triangle: */
\p400
P(n) = sum(k=0, 21, (n + k*y)^(2*k) * (x/n)^k/k! +O(x^21))
V=Vec( round( serlaplace( P(10^100)^(1/10^100) )*1.) )
for(n=1,15,print(Vec(V[n]+O(y^n))))
Showing 1-9 of 9 results.
Comments