cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A266481 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 5, 55, 993, 25501, 857773, 35850795, 1795564865, 104972371417, 7022842421301, 529428563641759, 44421725002096225, 4106744812439019765, 414834196219620026333, 45462732300569936279251, 5373006006732947705188737, 681229881246574750274962225, 92237589983019368975021777125, 13283769418970268811752725081607, 2027649185923009220298941142143201, 326999803592314489529958494308640461, 55558592280735155060861740192416874125
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.
Conjecture: a(p*n) = 1 (mod p) for n>=0 and all prime p.

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 993*x^4/4! + 25501*x^5/5! + 857773*x^6/6! + 35850795*x^7/7! + 1795564865*x^8/8! + 104972371417*x^9/9! + 7022842421301*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^2*(x/N) + (N+2)^4*(x/N)^2/2! + (N+3)^6*(x/N)^3/3! + (N+4)^8*(x/N)^4/4! + (N+5)^10*(x/N)^5/5! + (N+6)^12*(x/N)^6/6! +...]^(1/N).
RELATED SERIES.
The following limit exists:
G(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ] / A(x)^N
where
G(x) = 1 + 2*x + 22*x^2/2! + 432*x^3/3! + 12220*x^4/4! + 451480*x^5/5! + 20591784*x^6/6! + 1117635008*x^7/7! + 70348179472*x^8/8! + 5037843612960*x^9/9! + 404453425948000*x^10/10! +...+ A266522(n)*x^n/n! +...
Logarithm of the g.f. A(x) begins:
Log(A(x)) = x + 4*x^2/2! + 42*x^3/3! + 752*x^4/4! + 19360*x^5/5! + 654912*x^6/6! + 27546736*x^7/7! + 1388207872*x^8/8! + 81621893376*x^9/9! + 5488951731200*x^10/10! +...+ A266526(n)*x^n/n! +...
and forms a diagonal in the triangles A266521 and A266488.
		

Crossrefs

Programs

  • PARI
    {A266526(n) = n! * polcoeff( polcoeff( log( sum(m=0,n+1, (m + y)^(2*m) *x^m/m! ) +x*O(x^n) ),n,x), n+1,y)}
    {a(n) = n! * polcoeff( exp( sum(m=1,n+1, A266526(m)*x^m/m! ) +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Informal listing of terms 0..30 */
    \p100
    P(n) = sum(k=0,31, (n+k)^(2*k) * x^k/k! +O(x^31))
    Vec(round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )

Formula

E.g.f. exp( Sum_{n>=0} A266526(n)*x^n/n! ), where A266526(n) = [x^n*y^(n+1)/n!] log( Sum_{n>=0} (n + y)^(2*n) * x^n/n! ).
a(n) ~ c * d^n * n^(n-2), where d = 2*(1 + sqrt(2)) * exp(1 - sqrt(2)) = 3.19091339076710837219515616759285808414857..., c = sqrt(1 - 1/sqrt(2)) * exp(3 - 2*sqrt(2)) = 0.642492128663019850313957348436... . - Vaclav Kotesovec, Jan 01 2016, updated Mar 17 2024

A266483 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(4*n) * (x/N^3)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 9, 205, 8033, 456561, 34307545, 3219222301, 363018204225, 47866764942721, 7230829461286121, 1231746006983485005, 233652055492688836129, 48852757000944980067505, 11163401061821489604439737, 2768164393136241898192002781, 740339555234437428570144337025, 212438189627800855103688740374401, 65104233055709355841104275116309705, 21223353839635626633833547837080498509, 7333306933167926737746819644785091452641
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x + 9*x^2/2! + 205*x^3/3! + 8033*x^4/4! + 456561*x^5/5! + 34307545*x^6/6! + 3219222301*x^7/7! + 363018204225*x^8/8! + 47866764942721*x^9/9! + 7230829461286121*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^4*(x/N^3) + (N+2)^8*(x/N^3)^2/2! + (N+3)^12*(x/N^3)^3/3! + (N+4)^16*(x/N^3)^4/4! + (N+5)^20*(x/N^3)^5/5! + (N+6)^24*(x/N^3)^6/6! +...]^(1/N).
		

Crossrefs

Programs

  • PARI
    /* Informal listing of terms 0..30 */
    \p400
    P(n) = sum(k=0,32, (n+k)^(4*k) * x^k/k! +O(x^32))
    Vec(round(serlaplace( subst(P(10^100)^(1/10^100),x,x/10^300) )*1.) )
    
  • PARI
    /* Using logarithmic formual */
    {L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(4*m) *x^m/m! ) +x*O(x^n) ), n, x), 3*n+1, y)}
    {a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 29 2023

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! may be defined as follows.
(1) A(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(4*n) * (x/N^3)^n/n! ]^(1/N).
(2) A(x) = exp( Sum_{n>=0} L(n)*x^n/n! ), where L(n) = [x^n*y^(3*n+1)/n!] log( Sum_{n>=0} (n + y)^(4*n) * x^n/n! ). - Paul D. Hanna, Jan 29 2023
a(n) ~ 2^(3*n + 1/2) * (1 + sqrt(3))^(2*n-1) * exp((3-2*sqrt(3))*n - 4*sqrt(3) + 7) * n^(n-2) / 3^(3*n/2 + 1). - Vaclav Kotesovec, Mar 20 2024

A266482 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 7, 118, 3373, 139096, 7565779, 513277024, 41820455065, 3982842285184, 434457816912991, 53434112376345856, 7317518431787267653, 1104465712210096168960, 182183636400541105459627, 32609250878782525222260736, 6295153043394143761311198769, 1303848990485145459272159297536, 288415207140946760926622987982775, 67863051757810284274576363569872896, 16924929956887283486906002826128780381, 4459845456377312896416211474995205636096
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 118*x^3/3! + 3373*x^4/4! + 139096*x^5/5! + 7565779*x^6/6! + 513277024*x^7/7! + 41820455065*x^8/8! + 3982842285184*x^9/9! + 434457816912991*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^3*(x/N^2) + (N+2)^6*(x/N^2)^2/2! + (N+3)^9*(x/N^2)^3/3! + (N+4)^12*(x/N^2)^4/4! + (N+5)^15*(x/N^2)^5/5! + (N+6)^18*(x/N^2)^6/6! +...]^(1/N).
		

Crossrefs

Programs

  • PARI
    /* Informal listing of terms 0..30 */
    \p200
    P(n) = sum(k=0, 31, (n+k)^(3*k) * x^k/k! +O(x^31))
    Vec(round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^200) )*1.) )
    
  • PARI
    {L(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(3*m) *x^m/m! ) +x*O(x^n) ), n, x), 2*n+1, y)}
    {a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 15 2021

Formula

E.g.f. exp( Sum_{n>=0} L(n)*x^n/n! ), where L(n) = [x^n*y^(2*n+1)/n!] log( Sum_{n>=0} (n + y)^(3*n) * x^n/n! ). - Paul D. Hanna, Jul 15 2021
a(n) ~ 3^(n + 1/2) * (3 + sqrt(6))^(n - 1/2) * exp((2-sqrt(6))*n - 2*sqrt(6) + 5) * n^(n-2) / 2^(n + 3/2). - Vaclav Kotesovec, Mar 20 2024

A266485 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 9, 193, 6929, 356001, 24004825, 2012327521, 202156421409, 23701550853313, 3179302948594601, 480443117415138945, 80788534008942735409, 14965275494082095616097, 3028424508967743713615481, 664790043100841638943719201, 157352199248412053285546165825, 39950540529265571984889165180801
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.
Related limits (Paul D. Hanna, Jan 20 2023):
exp(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + n)^n * (x/N)^n/n! ]^(1/N).
W(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n)^n * (x/N)^n/n! ]^(1/N), where W(x) = LambertW(-x)/(-x).

Examples

			E.g.f.: A(x) = 1 + x + 9*x^2/2! + 193*x^3/3! + 6929*x^4/4! + 356001*x^5/5! + 24004825*x^6/6! + 2012327521*x^7/7! + 202156421409*x^8/8! + 23701550853313*x^9/9! + 3179302948594601*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+2)^2*(x/N) + (N+4)^4*(x/N)^2/2! + (N+6)^6*(x/N)^3/3! + (N+8)^8*(x/N)^4/4! + (N+10)^10*(x/N)^5/5! + (N+12)^12*(x/N)^6/6! +...]^(1/N).
The logarithm of the g.f. A(x) begins (_Paul D. Hanna_, Jan 20 2023):
(a) log(A(x)) = x + 8*x^2/2! + 168*x^3/3! + 6016*x^4/4! + 309760*x^5/5! + 20957184*x^6/6! + 1762991104*x^7/7! + 177690607616*x^8/8! + ... + A359926(n)*x^n/n! + ...
where A359926(n) = [x^n*y^(n+1)/n!] (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! );
that is, the coefficient of x^n/n! in the logarithm of e.g.f A(x) equals the coefficient of y^(n+1)*x^n/n! in the series given by
(b) (1/4) * log( Sum_{n>=0} (n + 2*y)^(2*n) * x^n/n! ) = (y^2 + y + 1/4)*x + (8*y^3 + 18*y^2 + 14*y + 15/4)*x^2/2! + (168*y^4 + 632*y^3 + 933*y^2 + 639*y + 683/4)*x^3/3! + (6016*y^5 + 33088*y^4 + 76480*y^3 + 92680*y^2 + 58720*y + 31019/2)*x^4/4! + ...
		

Crossrefs

Programs

  • PARI
    /* Informal listing of terms 0..30 */
    \p300
    P(n) = sum(k=0,32, (n+2*k)^(2*k) * x^k/k! +O(x^31))
    Vec( round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )
    
  • PARI
    /* Using formula for the logarithm of g.f. A(x) Paul D. Hanna, Jan 20 2023 */
    {L(n) = (1/4) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + 2*y)^(2*m) *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
    {a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! may be defined by the following (Paul D. Hanna, Jan 20 2023):
(1) A(x) = lim_{N->oo} [ Sum_{n>=0} (N + 2*n)^(2*n) * (x/N)^n/n! ]^(1/N).
(2) A(x) = exp( Sum_{n>=0} A359926(n)*x^n/n! ), where A359926(n) = (1/4) * [x^n*y^(n+1)/n!] log( Sum_{n>=0} (n + 2*y)^(2*n) *x^n/n! ).
a(n) ~ c * d^n * n^(n-2), where d = 4*(1 + sqrt(2)) * exp(1 - sqrt(2)) = 6.3818267815342167443903123351857161682971406064645602440616... and c = sqrt(1 - 1/sqrt(2))/2 * exp(3/2 - sqrt(2)) = 0.294836494691148677397464568534316405253091784834436235... - Vaclav Kotesovec, Jan 21 2023, updated Mar 17 2024

A266486 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + 3*n)^(2*n) * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 13, 415, 22321, 1721101, 174252997, 21935478979, 3308902366945, 582483654850105, 117302814498577501, 26610247617703733479, 6716634535536518884177, 1867456548257171896034245, 567177496490226897535216405, 186852683125922747089699211851, 66371163246016212237620717414593, 25287323016605747194753141853886961, 10287301449354981886046538248627595565, 4450859089975905722184296672608494825775, 2040775907870521098252331495354110194770801
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x + 13*x^2/2! + 415*x^3/3! + 22321*x^4/4! + 1721101*x^5/5! + 174252997*x^6/6! + 21935478979*x^7/7! + 3308902366945*x^8/8! + 582483654850105*x^9/9! + 117302814498577501*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+3)^2*(x/N) + (N+6)^4*(x/N)^2/2! + (N+9)^6*(x/N)^3/3! + (N+12)^8*(x/N)^4/4! + (N+15)^10*(x/N)^5/5! + (N+18)^12*(x/N)^6/6! +...]^(1/N).
		

Crossrefs

Programs

  • PARI
    /* Informal listing of terms 0..30 */
    \p300
    P(n) = sum(k=0,32, (n+3*k)^(2*k) * x^k/k! +O(x^32))
    Vec( round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )

A266487 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N - n)^(2*n) * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, -3, 31, -559, 14541, -496811, 21081859, -1070585055, 63366015673, -4285932328819, 326248732427751, -27610580638457807, 2572239828612623365, -261621661000490429211, 28849626308051995285771, -3428690784657696770593471, 436924188109882619766249201, -59432725217403244945921112675, 8595527924368773785463788378287, -1317123285394547040368548520041839, 213171869078193696050387803319525821, -36338236299957647745418230431675850763, 6507698606647750492700809995200106342675, -1221579456277487714539848255959245396739999
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x - 3*x^2/2! + 31*x^3/3! - 559*x^4/4! + 14541*x^5/5! - 496811*x^6/6! + 21081859*x^7/7! - 1070585055*x^8/8! + 63366015673*x^9/9! - 4285932328819*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N-1)^2*(x/N) + (N-2)^4*(x/N)^2/2! + (N-3)^6*(x/N)^3/3! + (N-4)^8*(x/N)^4/4! + (N-5)^10*(x/N)^5/5! + (N-6)^12*(x/N)^6/6! +...]^(1/N).
		

Crossrefs

Programs

  • PARI
    /* Informal listing of terms 0..30 */
    \p300
    H(n) = sum(k=0,32, (n - k)^(2*k) * x^k/k! +O(x^32))
    Vec( round( serlaplace( subst(H(10^100)^(1/10^100),x,x/10^100) )*1.) )

A266525 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ] / F(x)^N, where F(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N).

Original entry on oeis.org

1, 5, 160, 9135, 750400, 80441425, 10638828000, 1673678753075, 305252823558400, 63325918470124125, 14724939203560768000, 3793154255510116564375, 1072236911373050595840000, 329985748809343574149723625, 109830285822698899619230720000, 39309730439858456963398059166875, 15055402080033663459327206195200000, 6143747797144623366547686616298003125, 2661215654340427415860408455902822400000, 1219479030123689259752174147774198563109375, 589404548968234611551047396687998740070400000, 299658512455145134987556717044427762586006890625, 159865819819818837465659104892463315321094144000000
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

The e.g.f. A(x) of this sequence also satisfies:
A(x*y) = Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(5*n) * (x/N^4)^n/n! ] / G(x,y)^N
where
G(x,y) = Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(5*n) * (x/N^4)^n/n! ]^(1/N)
for all real y.

Examples

			E.g.f.: A(x) = 1 + 5*x + 160*x^2/2! + 9135*x^3/3! + 750400*x^4/4! + 80441425*x^5/5! + 10638828000*x^6/6! + 1673678753075*x^7/7! + 305252823558400*x^8/8! + 63325918470124125*x^9/9! + 14724939203560768000*x^10/10! +...
such that
A(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ] / F(x)^N
where
F(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N)
and
F(x) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + 317762099341696*x^9/9! + 61318533545522451*x^10/10! +...+ A266484(n)*x^n/n! +...
		

Crossrefs

A360341 a(n) = coefficient of x^n*y^(3*n+1)/n! in log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ).

Original entry on oeis.org

1, 10, 285, 14240, 1036225, 99774720, 11995938325, 1732780710400, 292580972777025, 56581144474976000, 12335796889894262125, 2994228576573719040000, 800930404887937807458625, 234113078032084301026816000, 74248479783538967821383793125, 25394786139647229685682094080000
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2023

Keywords

Examples

			E.g.f.: A(x) = x + 10*x^2/2! + 285*x^3/3! + 14240*x^4/4! + 1036225*x^5/5! + 99774720*x^6/6! + 11995938325*x^7/7! + 1732780710400*x^8/8! + ... + a(n)*x^n/n! + ...
where a(n) equals the coefficient of y^(4*n+1)*x^n/n! in the series given by
log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ) = (y^5 + 5*y^4 + 10*y^3 + 10*y^2 + 5*y + 1)*x + (10*y^9 + 135*y^8 + 840*y^7 + 3150*y^6 + 7812*y^5 + 13230*y^4 + 15240*y^3 + 11475*y^2 + 5110*y + 1023)*x^2/2! + (285*y^13 + 6985*y^12 + 82800*y^11 + 626640*y^10 + 3365015*y^9 + 13480875*y^8 + 41269545*y^7 + 97340225*y^6 + 176218089*y^5 + 241023105*y^4 + 241403365*y^3 + 167262045*y^2 + 71713845*y + 14345837)*x^3/3! + (14240*y^17 + 535150*y^16 + 9965360*y^15 + 121806600*y^14 + 1090732800*y^13 + 7563031080*y^12 + 41870604200*y^11 + 188252006020*y^10 + 693127766960*y^9 + 2094270509580*y^8 + 5176075514880*y^7 + 10375810342800*y^6 + 16622405553984*y^5 + 20792525880990*y^4 + 19576849364160*y^3 + 13053873999580*y^2 + 5496952909520*y + 1099451098702)*x^4/4! + ...
Exponentiation yields the e.g.f. of A266484:
exp(A(x)) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + ... + A266484(n)*x^n/n! + ...
which equals
lim_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N).
RELATED SEQUENCES.
a(n) is divisible by n where a(n)/n begins:
[1, 5, 95, 3560, 207245, 16629120, 1713705475, 216597588800, ...].
		

Crossrefs

Programs

  • PARI
    /* Using logarithmic formula */
    {a(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(5*m) *x^m/m! ) +x*O(x^n) ), n, x), 4*n+1, y)}
    for(n=1, 20, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! may be defined as follows.
(1) A(x) = Limit_{N->oo} (1/N) * log( Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ).
(2) a(n) = [x^n*y^(3*n+1)/n!] log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ).
a(n) ~ c * d^n * n! / n^(5/2), where d = (25/16) * (5 + 2*sqrt(5)) * exp(5 - 2*sqrt(5)) = 25.090908742294025045771061662375185533388200826641029119554... and c = 1/(8*sqrt((1 + 2/sqrt(5))*Pi)) = 0.05123846578813482717849518499100286... - Vaclav Kotesovec, Feb 12 2023, updated Mar 20 2024

A266488 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(2*n) * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 0, 1, 4, 0, 1, 12, 42, 0, 1, 24, 216, 752, 0, 1, 40, 660, 5440, 19360, 0, 1, 60, 1560, 22320, 178920, 654912, 0, 1, 84, 3150, 68320, 916440, 7316064, 27546736, 0, 1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0, 1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0, 1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.

Examples

			E.g.f. A(x) = 1 + x +
x^2/2! * (1 + 4*y) +
x^3/3! * (1 + 12*y + 42*y^2) +
x^4/4! * (1 + 24*y + 216*y^2 + 752*y^3) +
x^5/5! * (1 + 40*y + 660*y^2 + 5440*y^3 + 19360*y^4) +
x^6/6! * (1 + 60*y + 1560*y^2 + 22320*y^3 + 178920*y^4 + 654912*y^5) +
x^7/7! * (1 + 84*y + 3150*y^2 + 68320*y^3 + 916440*y^4 + 7316064*y^5 + 27546736*y^6) +
x^8/8! * (1 + 112*y + 5712*y^2 + 173600*y^3 + 3432800*y^4 + 44693376*y^5 + 359051392*y^6 + 1388207872*y^7) + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N + y)^2*(x/N) + (N + 2*y)^4*(x/N)^2/2! + (N + 3*y)^6*(x/N)^3/3! + (N + 4*y)^8*(x/N)^4/4! + (N + 5*y)^10*(x/N)^5/5! + (N + 6*y)^12*(x/N)^6/6! +...]^(1/N).
Triangle of coefficients T(n,k) of x^n*y^k/n!, n>=0, k=0..n, begins:
1;
1, 0;
1, 4, 0;
1, 12, 42, 0;
1, 24, 216, 752, 0;
1, 40, 660, 5440, 19360, 0;
1, 60, 1560, 22320, 178920, 654912, 0;
1, 84, 3150, 68320, 916440, 7316064, 27546736, 0;
1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0;
1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0;
1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0;
1, 220, 22770, 1467840, 65659440, 2143842624, 52117998240, 938463651840, 12065358919680, 100649306644480, 415721105434624, 0; ...
		

Crossrefs

Programs

  • PARI
    /* Print the initial rows of this triangle: */
    \p400
    P(n) = sum(k=0, 21, (n + k*y)^(2*k) * (x/n)^k/k! +O(x^21))
    V=Vec( round( serlaplace( P(10^100)^(1/10^100) )*1.) )
    for(n=1,15,print(Vec(V[n]+O(y^n))))
Showing 1-9 of 9 results.