A266511
Minimal difference between the smallest and largest of n consecutive large primes that form a symmetric n-tuplet as permitted by divisibility considerations.
Original entry on oeis.org
0, 2, 12, 8, 36, 16, 60, 26, 84, 34, 132, 46, 168, 56, 180, 74, 240, 82, 252, 94, 324, 106, 372, 118, 420, 134, 432, 142, 492, 146, 540, 158, 600, 166, 648, 178, 660, 194, 720, 202, 780, 214, 816, 226, 840, 254, 912, 262, 1020, 278
Offset: 1
For n=3, any shortest symmetric n-tuplet has the form (p, p+6, p+12) and thus a(3)=12.
From _Jon E. Schoenfield_, Jan 05 2016: (Start)
For each n-tuplet (p(1), ..., p(n)) with odd n, let m be its middle prime, i.e., m = p((n+1)/2). Then, since (by symmetry) (p(k) + p(n+1-k))/2 = m for all k = 1..n, we can define the n-tuplet by m and its vector of differences d(j) = m - p(j) for j = 1..(n-1)/2. In other words, given m and d(j) for j = 1..(n-1)/2, the (n-1)/2 primes below m are given by p(j) = m - d(j), and the (n-1)/2 primes above m are given by p(n+1-j) = m + d(j); the difference p(n) - p(1) is thus (m + d(1)) - (m - d(1)) = 2*d(1).
For example, one symmetric 7-tuplet of consecutive primes is (12003179, 12003191, 12003197, 12003209, 12003221, 12003227, 12003239), which can be written as (m-30, m-18, m-12, m, m+12, m+18, m+30) where m=12003209; here we have d(1)=30, d(2)=18, d(3)=12. Among all symmetric 7-tuplets of consecutive primes that satisfy divisibility considerations, the minimal value of d(1) is, in fact, 30, so a(7) = 2*30 = 60.
For n = 3, 5, ..., 29, the lexicographically first vector (d(1), d(2), ..., d((n-1)/2)) permitted by divisibility considerations is as follows:
n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--+-------------------------------------------------------
3| 6
5| 18 12
7| 30 18 12
9| 42 30 18 12
11| 66 60 36 24 6
13| 84 66 60 36 24 6
15| 90 84 66 60 36 24 6
17|120 108 90 78 60 48 42 18
19|126 120 114 96 84 54 36 30 6
21|162 150 132 120 108 102 78 48 42 18
23|186 180 150 144 126 96 84 66 60 54 30
25|210 186 180 150 144 126 96 84 66 60 54 30
27|216 210 204 180 126 120 114 96 84 54 36 30 6
29|246 216 210 204 186 174 144 126 90 84 66 60 24 6
(End)
a(15) and a(17)-a(18) from Jaroslaw Wroblewski
a(19), a(21), a(23), a(25), a(27), a(29) from
Jon E. Schoenfield, Jan 02 2016, Jan 05 2016
A335044
Primes starting 14-tuples of consecutive primes that have symmetrical gaps about their mean and form 7 pairs of twin primes.
Original entry on oeis.org
1855418882807417, 2485390773085247, 4038284355308309, 14953912258447817, 16152884167551797, 20149877129714999, 23535061700758967, 24067519779525107, 25892136591156917, 28681238268465371, 29359755788438639, 38364690814563809, 52367733685120277
Offset: 1
a(1) = A274792(7) = 1855418882807417 starts a 14-tuple of consecutive primes: 1855418882807417+s for s in {0 2 12 14 30 32 72 74 114 116 132 134 144 146} that are symmetric about 1855418882807417+73 and form 7 pairs of twin primes.
A266583
Smallest prime starting a symmetric n-tuple of consecutive primes of the smallest span (=A266676(n)).
Original entry on oeis.org
2, 2, 3, 5, 18713, 5, 12003179, 17, 1480028129, 13, 1542186111157, 41280160361347, 660287401247633, 10421030292115097, 3112462738414697093, 996689250471604163, 258406392900394343851, 824871967574850703732309, 9425346484752129657862217, 824871967574850703732303
Offset: 1
A335394
Primes starting 16-tuples of consecutive primes that have symmetrical gaps about their mean and form 8 pairs of twin primes.
Original entry on oeis.org
2640138520272677, 119890755200639999, 156961225134536189, 193609877401516181, 215315384130681929, 404072710417411769, 517426190585100089, 519460320704755811
Offset: 1
a(1) = A274792(8) = 2640138520272677 starts a 16-tuple of consecutive primes: 2640138520272677+s for s in {0, 2, 12, 14, 30, 32, 54, 56, 90, 92, 114, 116, 132, 134, 144, 146} that are symmetric about 2640138520272677+73 and form 8 pairs of twin primes.
A266585
Smallest m such that prime(m) starts a symmetric n-tuple of consecutive primes of the smallest span (=A266676(n)).
Original entry on oeis.org
1, 1, 2, 3, 2136, 3, 788244, 7, 73780392, 6, 57067140928, 1361665032086, 19953429852608, 290660101635794, 74896929428416952, 24660071077535201, 5620182896687887031
Offset: 1
A266676
Smallest span (difference between the start and end) of a symmetric n-tuple of consecutive primes.
Original entry on oeis.org
0, 1, 4, 8, 36, 14, 60, 26, 84, 34, 132, 46, 168, 56, 180, 74, 240, 82
Offset: 1
The smallest starting primes and their indices of the corresponding tuples are given in
A266583 and
A266585.
A330278
Primes starting 12-tuples of consecutive primes that have symmetrical gaps about their mean and form 6 pairs of twin primes.
Original entry on oeis.org
17479880417, 158074620437, 1071796554401, 1087779101699, 1153782400787, 1628444511389, 2066102452949, 2083857437327, 2561560206377, 3731086236287, 3751571181929, 4158362831639, 4878193583477, 5008751356547, 5378606656847, 5531533689527, 7020090738707, 7036216236989
Offset: 1
a(1) = A274792(6) = 17479880417 starts a 12-tuple of consecutive primes: 17479880417+s for s in {0, 2, 24, 26, 30, 32, 54, 56, 60, 62, 84, 86} that are symmetric about 17479880417+43 and form 6 pairs of twin primes.
A266584
Smallest m such that prime(m) starts a (nonsingular) symmetric n-tuplet of consecutive primes of the smallest span (=A266511(n)).
Original entry on oeis.org
1, 2, 15, 3, 2136, 4, 788244, 7, 73780392, 6, 57067140928, 1361665032086, 19953429852608, 290660101635794, 74896929428416952, 24660071077535201, 5620182896687887031
Offset: 1
A336966
Primes starting 10-tuples of consecutive primes that have symmetrical gaps about their mean and form 5 pairs of twin primes.
Original entry on oeis.org
3031329797, 5188151387, 14168924459, 14768184029, 18028534367, 26697800819, 26919220961, 29205326387, 32544026699, 39713433671, 45898528799, 48263504459, 50791655009, 66419473031, 71525244611, 80179195037, 83700877199, 86767580069, 97660776137, 108116163479
Offset: 1
a(1) = A274792(5) = 3031329797 starts a 10-tuple of consecutive primes: 3031329797+s for s in {0, 2, 12, 14, 42, 44, 72, 74, 84, 86} that are symmetric about 3031329797+43 and form 5 pairs of twin primes.
Showing 1-9 of 9 results.
Comments