A266550 Independence number of the n-Mycielski graph.
1, 1, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Independence Number.
- Eric Weisstein's World of Mathematics, Mycielski Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Magma
[1,1] cat [-1+3*2^(n-3): n in [3..40]]; // Vincenzo Librandi, Jan 01 2016
-
Magma
I:=[1,1,2,5]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jan 01 2016
-
Mathematica
Table[Piecewise[{{-1 + 3 2^(n - 3), n > 2}}, 1], {n, 35}] CoefficientList[Series[1 + x*(1 - x + x^2)/((1 - x)*(1 - 2*x)), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 01 2016 *)
Formula
G.f.: x + x^2*(1 - x + x^2)/((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1)-2*a(n-2) for n>2. - Vincenzo Librandi, Jan 01 2016
a(n) = A052940(n-3) for n > 3. - Georg Fischer, Oct 23 2018
E.g.f.: (3*exp(2*x) - 8*exp(x) + 5 + 10*x+ 2*x^2)/8. - Stefano Spezia, Sep 14 2024