cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266550 Independence number of the n-Mycielski graph.

Original entry on oeis.org

1, 1, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
Offset: 1

Views

Author

Eric W. Weisstein, Dec 31 2015

Keywords

Crossrefs

Programs

  • Magma
    [1,1] cat [-1+3*2^(n-3): n in [3..40]]; // Vincenzo Librandi, Jan 01 2016
    
  • Magma
    I:=[1,1,2,5]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jan 01 2016
  • Mathematica
    Table[Piecewise[{{-1 + 3 2^(n - 3), n > 2}}, 1], {n, 35}]
    CoefficientList[Series[1 + x*(1 - x + x^2)/((1 - x)*(1 - 2*x)), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 01 2016 *)

Formula

a(1) = 1, a(2) = 1; for n>2, a(n) = -1 + 3*2^(n-3) = A083329(n-2) = A055010(n-2) = A153893(n-3).
G.f.: x + x^2*(1 - x + x^2)/((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1)-2*a(n-2) for n>2. - Vincenzo Librandi, Jan 01 2016
a(n) = A052940(n-3) for n > 3. - Georg Fischer, Oct 23 2018
E.g.f.: (3*exp(2*x) - 8*exp(x) + 5 + 10*x+ 2*x^2)/8. - Stefano Spezia, Sep 14 2024