cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083329 a(0) = 1; for n > 0, a(n) = 3*2^(n-1) - 1.

Original entry on oeis.org

1, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943
Offset: 0

Views

Author

Paul Barry, Apr 27 2003

Keywords

Comments

Apart from leading term (which should really be 3/2), same as A055010.
Binomial transform of A040001. Inverse binomial transform of A053156.
a(n) = A105728(n+1,2). - Reinhard Zumkeller, Apr 18 2005
Row sums of triangle A133567. - Gary W. Adamson, Sep 16 2007
Row sums of triangle A135226. - Gary W. Adamson, Nov 23 2007
a(n) = number of partitions Pi of [n+1] (in standard increasing form) such that the permutation Flatten[Pi] avoids the patterns 2-1-3 and 3-1-2. Example: a(3)=11 counts all 15 partitions of [4] except 13/24, 13/2/4 which contain a 2-1-3 and 14/23, 14/2/3 which contain a 3-1-2. Here "standard increasing form" means the entries are increasing in each block and the blocks are arranged in increasing order of their first entries. - David Callan, Jul 22 2008
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 42, 138, 162, 168, lead to this sequence. For the central square these vectors lead to the companion sequence A003945. - Johannes W. Meijer, Aug 15 2010
The binary representation of a(n) has n+1 digits, where all digits are 1's except digit n-1. For example: a(4) = 23 = 10111 (2). - Omar E. Pol, Dec 02 2012
Row sums of triangle A209561. - Reinhard Zumkeller, Dec 26 2012
If a Stern's sequence based enumeration system of positive irreducible fractions is considered (for example, A007305/A047679, A162909/A162910, A071766/A229742, A245325/A245326, ...), and if it is organized by blocks or levels (n) with 2^n terms (n >= 0), and the fractions, term by term, are summed at each level n, then the resulting sequence of integers is a(n) + 1/2, apart from leading term (which should be 1/2). - Yosu Yurramendi, May 23 2015
For n >= 2, A083329(n) in binary representation is a string [101..1], also 10 followed with (n-1) 1's. For n >= 3, A036563(n) in binary representation is a string [1..101], also (n-2) 1's followed with 01. Thus A083329(n) is a reflection of the binary representation of A036563(n+1). Example: A083329(5) = 101111 in binary, A036563(6) = 111101 in binary. - Ctibor O. Zizka, Nov 06 2018
For n > 0, a(n) is the minimum number of turns in (n+1)-dimensional Euclidean space needed to visit all 2^(n+1) vertices of the (n+1)-cube (e.g., {0,1}^(n+1)) and return to the starting point, moving along straight-line segments between turns (turns may occur elsewhere in R^(n+1)). - Marco Ripà, Aug 14 2025

Examples

			a(0) = (3*2^0 - 2 + 0^0)/2 = 2/2 = 1 (use 0^0=1).
		

Crossrefs

Essentially the same as A055010 and A052940.
Cf. A007505 (primes).
Cf. A266550 (independence number of the n-Mycielski graph).

Programs

  • Haskell
    a083329 n = a083329_list !! n
    a083329_list = 1 : iterate ((+ 1) . (* 2)) 2
    -- Reinhard Zumkeller, Dec 26 2012, Feb 22 2012
    
  • Magma
    [1] cat [3*2^(n-1)-1: n in [1..40]]; // Vincenzo Librandi, Jan 01 2016
  • Maple
    seq(ceil((2^i+2^(i+1)-2)/2), i=0..31); # Zerinvary Lajos, Oct 02 2007
  • Mathematica
    a[1] = 2; a[n_] := 2a[n - 1] + 1; Table[ a[n], {n, 31}] (* Robert G. Wilson v, May 04 2004 *)
    Join[{1}, LinearRecurrence[{3, -2}, {2, 5}, 40]] (* Vincenzo Librandi, Jan 01 2016 *)
  • PARI
    a(n)=(3*2^n-2+0^n)/2 \\ Charles R Greathouse IV, Sep 24 2015
    

Formula

a(n) = (3*2^n - 2 + 0^n)/2.
G.f.: (1-x+x^2)/((1-x)*(1-2*x)). [corrected by Martin Griffiths, Dec 01 2009]
E.g.f.: (3*exp(2*x) - 2*exp(x) + exp(0))/2.
a(0) = 1, a(n) = sum of all previous terms + n. - Amarnath Murthy, Jun 20 2004
a(n) = 3*a(n-1) - 2*a(n-2) for n > 2, a(0)=1, a(1)=2, a(2)=5. - Philippe Deléham, Nov 29 2013
From Bob Selcoe, Apr 25 2014: (Start)
a(n) = (...((((((1)+1)*2+1)*2+1)*2+1)*2+1)...), with n+1 1's, n >= 0.
a(n) = 2*a(n-1) + 1, n >= 2.
a(n) = 2^n + 2^(n-1) - 1, n >= 2. (End)
a(n) = A086893(n) + A061547(n+1), n > 0. - Yosu Yurramendi, Jan 16 2017

A055010 a(0) = 0; for n > 0, a(n) = 3*2^(n-1) - 1.

Original entry on oeis.org

0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

Apart from leading term (which should really be 3/2), same as A083329.
Written in binary, a(n) is 1011111...1.
The sequence 2, 5, 11, 23, 47, 95, ... apparently gives values of n such that Nim-factorial(n) = 2. Cf. A059970. However, compare A060152. More work is needed! - John W. Layman, Mar 09 2001
With offset 1, number of (132,3412)-avoiding two-stack sortable permutations.
Number of descents after n+1 iterations of morphism A007413.
a(n) = A164874(n,1), n>0; subsequence of A030130. - Reinhard Zumkeller, Aug 29 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-1). - Milan Janjic, Jan 24 2010
a(n) is the total number of records over all length n binary words. A record in a word a_1,a_2,...,a_n is a letter a_j that is larger than all the preceding letters. That is, a_j>a_i for all iGeoffrey Critzer, Jul 18 2020
Called Thabit numbers after the Syrian mathematician Thābit ibn Qurra (826 or 836 - 901). - Amiram Eldar, Jun 08 2021
a(n) is the number of objects in a pile that represents a losing position in a Nim game, where a player must select at least one object but not more than half of the remaining objects, on their turn. - Kiran Ananthpur Bacche, Feb 03 2025

Examples

			a(3) = 3*2^2 - 1 = 3*4 - 1 = 11.
		

Crossrefs

Cf. A007505 for primes in this sequence. Apart from initial term, same as A052940 and A083329.
Cf. A266550 (independence number of the n-Mycielski graph).

Programs

Formula

a(n) = A118654(n-1, 4), for n > 0.
a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n) - 1 = 3*A000225(n) + 2.
a(n) = A010036(n)/2^(n-1). - Philippe Deléham, Feb 20 2004
a(n) = A099258(A033484(n)-1) = floor(A033484(n)/2). - Reinhard Zumkeller, Oct 09 2004
G.f.: x*(2-x)/((1-x)*(1-2*x)). - Philippe Deléham, Oct 04 2011
a(n+1) = A196168(A000079(n)). - Reinhard Zumkeller, Oct 28 2011
E.g.f.: (3*exp(2*x) - 2*exp(x) - 1)/2. - Stefano Spezia, Sep 14 2024

A290114 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
Offset: 0

Views

Author

Robert Price, Jul 19 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Essentially the same as A153893, A083329, A055010, A052940, A266550.

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 643; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

For n>1, a(n) = 3*2^(n-1)-1.
a(n) = A266550(n+2) for n > 1. - Georg Fischer, Oct 30 2018
a(n) = 2*a(n-1) + 1 for n=1 and n>=3. - Gennady Eremin, Aug 26 2023
From Chai Wah Wu, Apr 02 2024: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 3.
G.f.: (2*x^3 - 2*x^2 + 1)/((x - 1)*(2*x - 1)). (End)
Showing 1-3 of 3 results.