A266698 x-values of solutions to the Diophantine equation x^2 - 7*y^2 = 2.
3, 45, 717, 11427, 182115, 2902413, 46256493, 737201475, 11748967107, 187246272237, 2984191388685, 47559815946723, 757972863758883, 12080006004195405, 192522123203367597, 3068273965249686147, 48899861320791610755, 779329507167416085933, 12420372253357865764173, 197946626546558436140835
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..750
- Index entries for linear recurrences with constant coefficients, signature (16,-1).
Programs
-
Magma
[n: n in [1..2*10^7] | IsSquare((n^2-2)/7)]; // Vincenzo Librandi, Jan 06 2016
-
Mathematica
LinearRecurrence[{16,-1}, {3, 45}, 20 ]
-
PARI
lista(nn) = {print1(x = 3, ", "); print1(y = 45, ", "); for (n=2, nn, z = 16*y - x; print1(z, ", "); x = y; y = z;);} \\ Michel Marcus, Jan 05 2016
-
SageMath
[3*(chebyshev_U(n-1, 8) - chebyshev_U(n-2, 8)) for n in (1..30)] # G. C. Greubel, Jun 25 2022
Formula
a(1)=3, a(2)=45, a(n) = 16*a(n-1) - a(n-2).
a(n) = A041008(4n-2). - Robert Israel, Jan 05 2016
From R. J. Mathar, Jan 12 2016: (Start)
G.f.: 3*x*(1-x) / ( 1-16*x+x^2 ).
a(n) = 3*A157456(n). (End)
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = 3*(ChebyshevU(n-1, 8) - ChebyshevU(n-2, 8)).
E.g.f.: exp(8*x)*(3*cosh(3*sqrt(7)*x) - sqrt(7)*sinh(3*sqrt(7)*x)) - 3. (End)
Comments