cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346494 Heptagonal numbers (A000566) with prime indices (A000040).

Original entry on oeis.org

7, 18, 55, 112, 286, 403, 697, 874, 1288, 2059, 2356, 3367, 4141, 4558, 5452, 6943, 8614, 9211, 11122, 12496, 13213, 15484, 17098, 19669, 23377, 25351, 26368, 28462, 29539, 31753, 40132, 42706, 46717, 48094, 55279, 56776, 61387, 66178, 69472, 74563, 79834
Offset: 1

Views

Author

Dumitru Damian, Aug 22 2021

Keywords

Examples

			a(1) = Heptagonal(prime(1)) = A000566(2) = 2*(5*2-3)/2 = 7;
a(2) = Heptagonal(prime(2)) = A000566(3) = 3*(5*3-3)/2 = 18;
a(3) = Heptagonal(prime(3)) = A000566(5) = 5*(5*5-3)/2 = 55.
		

Crossrefs

Programs

  • Mathematica
    A346494[n_] := PolygonalNumber[7, Prime[n]]; Table[A346494[n], {n, 1, 41}] (* Robert P. P. McKone, Aug 22 2021 *)
  • PARI
    a(n) = my(p=prime(n)); p*(5*p-3)/2; \\ Michel Marcus, Sep 16 2021
  • Python
    from sympy import primerange
    print([p*(5*p-3)//2 for p in primerange(1, 180)]) # Michael S. Branicky, Aug 22 2021
    
  • Sage
    A = [int(p*(5*p-3)/2) for p in range(0,10^3) if p in Primes()]
    

Formula

a(n) = A000566(A000040(n)) = prime(n)*(5*prime(n)-3)/2.

A267217 10-gonal (or decagonal) numbers with prime indices.

Original entry on oeis.org

10, 27, 85, 175, 451, 637, 1105, 1387, 2047, 3277, 3751, 5365, 6601, 7267, 8695, 11077, 13747, 14701, 17755, 19951, 21097, 24727, 27307, 31417, 37345, 40501, 42127, 45475, 47197, 50737, 64135, 68251, 74665, 76867, 88357, 90751, 98125, 105787, 111055, 119197, 127627, 130501, 145351, 148417, 154645
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 12 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[n] (4 Prime[n] - 3), {n, 1, 45}]
    Module[{nn=200,pn},pn=PolygonalNumber[10,Range[nn]];Table[pn[[p]],{p,Prime[ Range[PrimePi[nn]]]}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 27 2020 *)
  • PARI
    lista(nn) = forprime(p=2, nn, print1(p*(4*p-3), ", ")); \\ Altug Alkan, Jan 12 2016

Formula

a(n) = prime(n)*(4*prime(n) - 3) = A000040(n)*(4*A000040(n) - 4).
a(n) = A001107(A000040(n)).
a(n) = sigma_0(48^(prime(n) - 1)) = A000005(A009992(A000040(n) - 1)).
Showing 1-2 of 2 results.