cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267290 Primes of the form 11*k^2-11*k+7.

Original entry on oeis.org

7, 29, 73, 139, 227, 337, 997, 1217, 1459, 1723, 2647, 2999, 3373, 3769, 5573, 6079, 6607, 15473, 17167, 18047, 21787, 22777, 23789, 28057, 29179, 30323, 31489, 36373, 37649, 41609, 45767, 48649, 50123, 56239, 61057, 67789, 71287, 74873, 84223, 88117, 108907, 113329, 117839, 124769, 127123, 129499
Offset: 1

Views

Author

Emre APARI, Jan 12 2016

Keywords

Comments

Primes p == 7 (mod 11) such that (4*p-17)/11 is a square. - Robert Israel, Jan 14 2016

Examples

			k = 3: 11*(3^2) - 11*3 + 7 = 73 (is prime).
		

Crossrefs

Cf. A141854.

Programs

  • Magma
    [a: n in [1..100] | IsPrime(a) where a is 11*n^2-11*n+7]; // Vincenzo Librandi, Jan 15 2016
  • Maple
    select(isprime, [seq(11*i^2-11*i+7, i=1..1000)]); # Robert Israel, Jan 14 2016
  • Mathematica
    Select[Array[11 #^2 - 11 # + 7 &, {112}], PrimeQ] (* Michael De Vlieger, Jan 12 2016 *)
    Select[Table[11 n^2 - 11 n + 7, {n, 180}], PrimeQ] (* Vincenzo Librandi, Jan 15 2016 *)
  • PARI
    lista(nn) = for (k=1, nn, if (isprime(p=11*k^2-11*k+7), print1(p, ", "))); \\ Michel Marcus, Jan 14 2016
    

Extensions

More terms from Michael De Vlieger, Jan 12 2016