cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267317 a(n) = final digit of 2^n-1.

Original entry on oeis.org

0, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

Decimal expansion of 25/1818.
Period 4: repeat [1, 3, 7, 5] for n > 0.

Crossrefs

Programs

  • Magma
    [0] cat &cat[[1, 3, 7, 5]^^25]; // Bruno Berselli, Jan 13 2016
    
  • Maple
    A267317:=n->(2^n-1) mod 10: seq(A267317(n), n=0..150); # Wesley Ivan Hurt, Jun 15 2016
  • Mathematica
    Table[Mod[2^n - 1, 10], {n, 0, 120}]
  • PARI
    a(n) = if(n==0, 0, if(n%4==0, 5, if(n%4==1, 1, if(n%4==2, 3, if(n%4==3, 7))))) \\ Felix Fröhlich, Jan 19 2016
    
  • PARI
    a(n) = lift(Mod(2^n-1, 10)) \\ Felix Fröhlich, Jan 19 2016

Formula

G.f.: x*(1 + 2*x + 5*x^2)/(1 - x + x^2 - x^3).
a(n) = A010879(A000225(n)).
a(n) = A000689(n) - 1.
a(n) = (1+(-1)^n)*(-1)^(n*(n-1)/2)/2 + 3*(1-(-1)^n)*(-1)^(n*(n+1)/2)/2 + 4 for n > 0, a(0) = 0. [Bruno Berselli, Jan 13 2016]
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = a(n-4) for n>4.
a(2k+2) = A010703(k), a(2k+1) = A010688(k). (End)
From Wesley Ivan Hurt, Jul 06 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 3.
a(n) = 4 + cos(n*Pi/2) - 3*sin(n*Pi/2) for n > 0. (End)
E.g.f.: -5 + cos(x) - 3*sin(x) + 4*exp(x). - Ilya Gutkovskiy, Jul 06 2016