cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267318 Continued fraction expansion of e^(1/5).

Original entry on oeis.org

1, 4, 1, 1, 14, 1, 1, 24, 1, 1, 34, 1, 1, 44, 1, 1, 54, 1, 1, 64, 1, 1, 74, 1, 1, 84, 1, 1, 94, 1, 1, 104, 1, 1, 114, 1, 1, 124, 1, 1, 134, 1, 1, 144, 1, 1, 154, 1, 1, 164, 1, 1, 174, 1, 1, 184, 1, 1, 194, 1, 1, 204, 1, 1, 214, 1, 1, 224, 1, 1, 234, 1, 1, 244, 1, 1, 254, 1, 1, 264, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

e^(1/5) is a transcendental number.
In general, the ordinary generating function for the continued fraction expansion of e^(1/k), with k = 1, 2, 3..., is (1 + (k - 1)*x + x^2 - (k + 1)*x^3 + 7*x^4 - x^5)/(1 - x^3)^2.

Examples

			e^(1/5) = 1 + 1/(4 + 1/(1 + 1/(1 + 1/(14 + 1/(1 + 1/...))))).
		

Crossrefs

Cf. A092514.
Cf. continued fraction expansion of e^(1/k): A003417 (k=1), A058281 (k=2), A078689 (k=3), A078688 (k=4), this sequence (k=5).

Programs

  • Magma
    [1+(3+10*Floor(n/3))*(1-(n-1)^2 mod 3): n in [0..90]]; // Bruno Berselli, Feb 04 2016
  • Mathematica
    ContinuedFraction[Exp[1/5], 82]
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 4, 1, 1, 14, 1}, 82]
    CoefficientList[Series[(1 + 4 x + x^2 - x^3 + 6 x^4 - x^5) / (x^3 - 1)^2, {x, 0, 70}], x] (* Vincenzo Librandi, Jan 13 2016 *)
    Table[1 + (3 + 10 Floor[n/3]) (1 - Mod[(n - 1)^2, 3]), {n, 0, 90}] (* Bruno Berselli, Feb 04 2016 *)

Formula

G.f.: (1 + 4*x + x^2 - x^3 + 6*x^4 - x^5)/(1 - x^3)^2.
a(n) = 1 + (3 + 10*floor(n/3))*(1 - (n-1)^2 mod 3). [Bruno Berselli, Feb 04 2016]

Extensions

Edited by Bruno Berselli, Feb 04 2016