cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267319 Continued fraction expansion of phi^8, where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

46, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

More generally, the ordinary generating function for the continued fraction expansion of phi^(2*k + 1), where phi = (1 + sqrt(5))/2, k = 1, 2, 3,... is floor(phi^(2*k + 1))/(1 - x), and for the continued fraction expansion of phi^(2*k) is (floor(phi^(2*k)) + x - x^2)/(1 - x^2).

Examples

			phi^8 = (47 + 21*sqrt(5))/2 = 46 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/...)))))).
		

Crossrefs

Cf. A001622.
Cf. continued fraction expansion of phi^k: A000012 (k = 1), A054977 (k = 2), A010709 (k = 3), A176260 (k = 4, for n>0), A010850 (k = 5), A040071 (k = 6, for n>0), A010868 (k = 7), this sequence (k = 8).

Programs

  • Magma
    [46] cat &cat [[1, 45]^^50]; // Vincenzo Librandi, Jan 13 2016
  • Mathematica
    ContinuedFraction[(47 + 21 Sqrt[5])/2, 82]

Formula

G.f.: (46 + x - x^2)/(1 - x^2).
a(n) = 23 + 22*(-1)^n for n>0. - Bruno Berselli, Jan 18 2016