cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267322 Expansion of (1 + x + x^2 + x^4 + 2*x^5)/(1 - x^3)^3.

Original entry on oeis.org

1, 1, 1, 3, 4, 5, 6, 9, 12, 10, 16, 22, 15, 25, 35, 21, 36, 51, 28, 49, 70, 36, 64, 92, 45, 81, 117, 55, 100, 145, 66, 121, 176, 78, 144, 210, 91, 169, 247, 105, 196, 287, 120, 225, 330, 136, 256, 376, 153, 289, 425, 171, 324, 477, 190, 361, 532, 210, 400, 590, 231, 441, 651
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2016

Keywords

Comments

Triangular numbers alternating with squares and pentagonal numbers.

Examples

			Illustration of initial terms:
==========================================================
n:    0   1   2     3     4     5       6       7       8
----------------------------------------------------------
                                                        o
                                                      o o
                                o       o   o o o   o o o
                    o   o o   o o     o o   o o o   o o o
      o   o   o   o o   o o   o o   o o o   o o o   o o o
==========================================================
      1   1   1     3     4     5       6       9      12
----------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {1, 1, 1, 3, 4, 5, 6, 9, 12}, 70]
    Table[(Floor[n/3] + 1) ((n + 1) Floor[n/3] - 3 Floor[n/3]^2 + 2)/2, {n, 0, 70}] (* Bruno Berselli, Apr 08 2016 *)
    CoefficientList[Series[(1+x+x^2+x^4+2x^5)/(1-x^3)^3,{x,0,70}],x] (* Harvey P. Dale, Dec 31 2023 *)
  • PARI
    x='x+O('x^99); Vec((1+x+x^2+x^4+2*x^5)/(1-x^3)^3) \\ Altug Alkan, Apr 07 2016

Formula

G.f.: (1 + x + x^2 + x^4 + 2*x^5)/(1 - x^3)^3.
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9).
a(3k) = A000217(k+1), a(3k+1) = A000290(k+1), a(3k+2) = A000326(k+1).
Sum_{n>=0} 1/a(n) = 2 - Pi/sqrt(3) + Pi^2/6 + 3*log(3) = 5.1269715686...
a(n) = (floor(n/3) + 1)*((n+1)*floor(n/3) - 3*floor(n/3)^2 + 2)/2. - Bruno Berselli, Apr 08 2016