cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267325 Next n digits of sqrt(2).

Original entry on oeis.org

1, 41, 421, 3562, 37309, 504880, 1688724, 20969807, 856967187, 5376948073, 17667973799, 73247846210, 7038850387534, 32764157273501, 384623091229702, 4924836055850737, 21264412149709993, 583141322266592750, 5592755799950501152, 78206057147010955997
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Examples

			a(2) = 41 because the second and third digits of sqrt(2) are 4 and 1.
		

Crossrefs

Programs

  • Magma
    [Floor(Sqrt(2)*10^(n*(n + 1)/2 - 1)) mod (10^n): n in [1..30]]; // Vincenzo Librandi, Feb 15 2016
    
  • Mathematica
    Table[Mod[Floor[Sqrt[2] 10^(n ((n + 1)/2) - 1)], 10^n], {n, 1, 20}]
    Table[Floor[10^(-1 + (n (1 + n))/2) Sqrt[2]] + Ceiling[-(Floor[10^(-1 + (n (1 + n))/2) Sqrt[2]]/10^n)] 10^n, {n, 1, 20}]
    With[{x=20},FromDigits/@TakeList[RealDigits[Sqrt[2],10,(x(x+1))/2] [[1]], Range[x]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 04 2019 *)
  • PARI
    a(n) = lift(Mod(floor(sqrt(2)*10^(n*(n + 1)/2 - 1)), 10^n)); \\ G. C. Greubel, Oct 07 2018

Formula

a(n) = floor(sqrt(2)*10^(n*(n + 1)/2 - 1)) mod (10^n).