cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267809 a(1)=a(2)=1; if n>2 then a(n) = a(n-2) + (a(n-1) mod 10).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 11, 14, 15, 19, 24, 23, 27, 30, 27, 37, 34, 41, 35, 46, 41, 47, 48, 55, 53, 58, 61, 59, 70, 59, 79, 68, 87, 75, 92, 77, 99, 86, 105, 91, 106, 97, 113, 100, 113, 103, 116, 109, 125, 114, 129, 123, 132, 125, 137, 132, 139, 141, 140, 141, 141, 142, 143, 145, 148, 153
Offset: 1

Views

Author

Keywords

Comments

a(n) - (7/3)*n is periodic with period 60. - Robert Israel, Jan 20 2016

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..70] do a[n]:=a[n-2]+(a[n-1] mod 10); od; a; # Muniru A Asiru, Mar 20 2018
  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else Self(n-2)+(Self(n-1)mod 10): n in [1..70]]; // Vincenzo Librandi, Feb 12 2016
    
  • Maple
    A[1]:=1: A[2]:= 1:
    for n from 3 to 100 do A[n]:= A[n-2] + (A[n-1] mod 10) od:
    seq(A[n],n=1..100); # Robert Israel, Jan 20 2016
  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = Mod[a[n - 1], 10] + a[n - 2];Array[a,100]
    nxt[{n_,a_,b_}]:={n+1,b,a+Mod[b,10]}; NestList[nxt,{2,1,1},70] [[All,2]] (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    lista(nn)=print1(a = 1, ", "); print1(b = 1, ", "); for (n=1, nn, c = a + b % 10; print1(c, ", "); a = b; b = c;); \\ Michel Marcus, Feb 10 2016
    
  • PARI
    a=vector(10^5); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-1]%10+a[n-2]); a \\ Altug Alkan, Mar 20 2018
    

Formula

G.f.: (x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 2*x^8 + 2*x^10 + 2*x^11 + 4*x^12 - 3*x^13 + x^14 + 7*x^15 - 3*x^16 + 4*x^17 + 2*x^18 + 5*x^19 - 3*x^20 - 7*x^21 + x^22 - 6*x^23 + 4*x^24 - x^25 + 3*x^26 + x^27 + 3*x^28 + 4*x^29 - 2*x^30 + 2*x^31 + 2*x^33 + 3*x^34 + 5*x^35 + 7*x^36 + 2*x^37 + 9*x^38 + x^39 - x^40)/(1 - x^2 - x^6 + x^8 + x^12 - x^14 - x^15 + x^17 - x^18 + x^20 + x^21 - x^23 + x^24 - x^26 - x^27 + x^29 + x^33 - x^35 - x^39 + x^41). - Robert Israel, Jan 20 2016