cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267984 Numbers congruent to {17, 23} mod 30.

Original entry on oeis.org

17, 23, 47, 53, 77, 83, 107, 113, 137, 143, 167, 173, 197, 203, 227, 233, 257, 263, 287, 293, 317, 323, 347, 353, 377, 383, 407, 413, 437, 443, 467, 473, 497, 503, 527, 533, 557, 563, 587, 593, 617, 623, 647, 653, 677, 683, 707, 713, 737, 743, 767, 773
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 23 2016

Keywords

Comments

Union of A128468 and A128473.
For all k >= 1 the numbers 2^k + a(n) and a(n)*2^k + 1 do not form a pair of primes, where n is any positive integer.

Crossrefs

Programs

  • Magma
    [n: n in [0..773] | n mod 30 in {17, 23}];
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {17, 23, 47}, 52]
  • PARI
    Vec(x*(17 + 6*x + 7*x^2)/((1 + x)*(1 - x)^2) + O(x^53))

Formula

a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(17 + 6*x + 7*x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 30.
a(n) = 10*(3*n - 2) - a(n-1).
From Colin Barker, Jan 24 2016: (Start)
a(n) = (30*n - 9*(-1)^n - 5)/2 for n>0.
a(n) = 15*n - 7 for n>0 and even.
a(n) = 15*n + 2 for n odd.
(End)
E.g.f.: 7 + ((30*x - 5)*exp(x) - 9*exp(-x))/2. - David Lovler, Sep 10 2022