A013709 a(n) = 4^(2*n+1).
4, 64, 1024, 16384, 262144, 4194304, 67108864, 1073741824, 17179869184, 274877906944, 4398046511104, 70368744177664, 1125899906842624, 18014398509481984, 288230376151711744, 4611686018427387904, 73786976294838206464, 1180591620717411303424, 18889465931478580854784
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Tanya Khovanova, Recursive Sequences
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (16).
Programs
-
Magma
[4^(2*n+1): n in [0..20]]; // Vincenzo Librandi, May 26 2011
-
Maple
A013709:=n->4^(2*n+1): seq(A013709(n), n=0..20); # Wesley Ivan Hurt, Jan 30 2016
-
Mathematica
2^(4 Range[0, 15] + 2) (* Alonso del Arte, Sep 03 2012 *) NestList[16#&,4,20] (* Harvey P. Dale, Jun 03 2013 *)
-
PARI
a(n)=4<<(4*n) \\ Charles R Greathouse IV, Apr 07 2012
Formula
a(n) = 16*a(n-1), n > 0; a(0) = 4. G.f.: 4/(1 - 16*x). [Philippe Deléham, Nov 23 2008]
a(n) = 4^(2*n + 1) = 2^(4*n + 2). - Alonso del Arte, Sep 03 2012
a(n) = 4*A001025(n). - Michel Marcus, Jan 30 2016
From Elmo R. Oliveira, Aug 26 2024: (Start)
E.g.f.: 4*exp(16*x).
Comments