A268082 Numbers n such that gcd(binomial(2*n-1,n), n) is equal to 1.
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 39, 41, 43, 47, 49, 53, 55, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 93, 97, 101, 103, 107, 109, 111, 113, 119, 121, 125, 127, 128, 131, 137, 139, 149, 151, 155, 157, 161, 163, 167, 169, 173, 179
Offset: 1
Keywords
Examples
For n=3, binomial(2*n-1, n) = binomial(5, 3) = 10 and 10 is coprime to 3, so 3 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Victor J.W. Guo and Jiang Zeng, Factors of binomial sums from the Catalan triangle, Journal of Number Theory 130 (2010) 172-186.
- Wikipedia, Kummer's theorem
- Wikipedia, Lucas's theorem
Programs
-
Magma
[n: n in [1..200] | Gcd(Binomial(2*n-1,n), n) eq 1]; // Vincenzo Librandi, Jan 26 2016
-
Maple
filter:= proc(n) local F,p; if n::even then evalb(n = 2^padic:-ordp(n,2)) else F:= numtheory:-factorset(n); for p in F do if max(convert(n,base,p)) > p/2 then return false fi; od; true fi end proc: select(filter, [$1..1000]); # Robert Israel, Jan 26 2016
-
Mathematica
Select[Range@ 180, GCD[Binomial[2 # - 1, #], #] == 1 &] (* Michael De Vlieger, Jan 26 2016 *)
-
PARI
isok(n) = gcd(binomial(2*n-1,n), n) == 1;
-
PARI
lista(nn) = for(n=1, nn, if(gcd(binomial(2*n-1, n), n) == 1, print1(n, ", "))); \\ Altug Alkan, Jan 26 2016
Comments