cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201059 Denominator of binomial(2n,n)/(2n).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 6, 13, 7, 1, 16, 17, 3, 19, 2, 7, 11, 23, 4, 25, 13, 27, 1, 29, 15, 31, 32, 11, 17, 5, 18, 37, 19, 39, 4, 41, 1, 43, 11, 1, 23, 47, 8, 49, 25, 17, 13, 53, 9, 55, 14, 19, 29, 59, 5, 61, 31, 21, 64, 13, 1, 67, 34, 23, 7, 71, 4, 73, 37, 5
Offset: 1

Views

Author

N. J. A. Sloane, Nov 26 2011

Keywords

Comments

There is at least one published paper that refers to binomial(2n,n)/(2n) as the Catalan numbers. Of course the Catalan numbers are really A000108.

Examples

			1, 3/2, 10/3, 35/4, 126/5, 77, 1716/7, 6435/8, 24310/9, 46189/5, 352716/11, 676039/6, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Binomial[2n,n]/(2n)],{n,50}] (* Harvey P. Dale, Oct 04 2021 *)
  • PARI
    a(n) = denominator(binomial(2*n,n)/(2*n)); \\ Michel Marcus, Jan 08 2024
    
  • PARI
    a(n) = my(f = factor(2*n), res = 1); for(i = 1, #f~, v = val(2*n, f[i,1]) - 2*val(n, f[i, 1]) - f[i, 2]; if(v < 0, res*=f[i, 1]^(-v))); res
    val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Jan 10 2024

Extensions

More terms from Michel Marcus, Jan 08 2024

A268083 Numbers k that are not prime powers and such that gcd(binomial(2*k-1,k), k) = 1.

Original entry on oeis.org

39, 55, 93, 111, 119, 155, 161, 185, 253, 275, 279, 305, 327, 333, 351, 363, 377, 403, 407, 413, 497, 511, 517, 533, 559, 629, 635, 649, 655, 685, 689, 697, 707, 741, 749, 755, 779, 785, 791, 813, 817, 849, 871, 893, 901, 905, 923, 981, 1003, 1011, 1027, 1043
Offset: 1

Views

Author

Michel Marcus, Jan 26 2016

Keywords

Comments

It seems there is a typo in the Gua and Zeng link, it gives 175 instead of 185 as a term.

Crossrefs

Programs

  • Magma
    [n : n in [2..2000] | not IsPrimePower(n) and Gcd(Binomial(2*n-1,n), n) eq 1]; // Vincenzo Librandi, Jan 26 2016
    
  • Mathematica
    Select[Range[2,1100],!PrimePowerQ[#]&&GCD[Binomial[2#-1,#],#]==1&] (* Harvey P. Dale, May 26 2020 *)
  • PARI
    isok(n) = (n != 1) && !isprimepower(n) && (gcd(binomial(2*n-1,n), n) == 1);
    
  • Python
    from math import gcd
    from sympy import factorint
    A268083_list, b = [], 1
    for n in range(1,10**4):
        if len(factorint(n)) > 1 and gcd(b,n) == 1:
            A268083_list.append(n)
        b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Jan 26 2016
Showing 1-2 of 2 results.