A268112 Numbers k for which the numerator of the k-th harmonic number H_k is divisible by the third power of a prime less than k.
848, 9338, 10583, 3546471722268916272
Offset: 1
Links
- Petros Hadjicostas, Table of n, a(n) for n = 1..5
- David W. Boyd, A p-adic study of the partial sum of the harmonic series, Experimental Mathematics, 3(4) (1994), 287-302.
- Leonardo Carofiglio, Giacomo Cherubini, and Alessandro Gambini, On Eswarathasan--Levine and Boyd's conjectures for harmonic numbers, arXiv:2503.15714 [math.NT], 2025.
- L. Carofiglio and G. Cherubini, A copy of the supplementary file with some large terms from Carofiglio et al. (2025) study.
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, arXiv:0709.1432 [math.NT], 2007-2009.
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, II, Communications in Number Theory and Physics, Volume 3, Number 3 (2009), 555-591.
- Tamás Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015), 73-94.
Programs
-
PARI
h(n) = sum(i=1, n, 1/i); is(n) = {forprime(p=1, n-1, if(valuation((numerator(h(n))), p) > 2, return(1))); return(0)} \\ Edited by Petros Hadjicostas, May 25 2020
Extensions
Name edited by and a(5) copied from the references by Petros Hadjicostas, May 25 2020
Comments