cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A271949 Somos's sequence {b(4,n)} defined in comment in A078495: a(0)=a(1)=...=a(10)=1; for n>=11, a(n)=(a(n-1)*a(n-10)+a(n-5)*a(n-6))/a(n-11).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 14, 26, 46, 76, 200, 356, 596, 1044, 1952, 5136, 17888, 48376, 109520, 225248, 724672, 1749280, 5359328, 18277312, 57803136, 235710976, 1067767168, 3411743616, 9748806656, 29696723456, 156028988416
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 11 select 1 else (Self(n-1)*Self(n-10) + Self(n-5)*Self(n- 6))/Self(n-11): n in [1..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[4,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
    RecurrenceTable[{Table[a[d]==1,{d,0,10}],a[n]==(a[n-1]a[n-10]+ a[n-5]a[n-6])/ a[n-11]},a,{n,50}] (* Harvey P. Dale, Oct 18 2021 *)
  • PARI
    {a(n) = if(n< 11, 1, (a(n-1)*a(n-10) + a(n-5)*a(n-6))/a(n-11))};
    for(n=0,30, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271950 Somos's sequence {b(5,n)} defined in comment in A078495: a(0)=a(1)=...=a(12)=1; for n>=13, a(n)=(a(n-1)*a(n-12)+a(n-6)*a(n-7))/a(n-13).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 15, 27, 47, 77, 119, 301, 519, 827, 1351, 2345, 4263, 10598, 35021, 91652, 200923, 396578, 742721, 2258305, 5126953, 14354017, 45716169, 138331649, 377080865, 1330892225, 5490413305, 16470110241
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 13 select 1 else ((Self(n-1)*Self(n-12) + Self(n-6)*Self(n- 7) )/Self(n-13)): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[5,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]== a[8]== a[9]== a[10]== a[11] ==a[12]==1,a[n]==(a[n-1]a[n-12]+a[n-6]a[n-7])/a[n-13]},a,{n,50}] (* Harvey P. Dale, May 01 2018 *)
  • PARI
    {a(n) = if(n< 12, 1, (a(n-1)*a(n-12) + a(n-6)*a(n-7))/a(n-13))};
    for(n=0,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271952 Somos's sequence {b(6,n)} defined in comment in A078495: a(0)=a(1)=...=a(14)=1; for n>=15, a(n)=(a(n-1)*a(n-14)+a(n-7)*a(n-8))/a(n-15).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 28, 48, 78, 120, 176, 432, 728, 1120, 1736, 2832, 4864, 8576, 20224, 63808, 162624, 348224, 668288, 1204736, 2114560, 6175744, 13394432, 34860544, 104595968, 304683008, 807587840
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 15 select 1 else (Self(n-1)*Self(n-14)+Self(n-7)*Self(n-8))/Self(n-15): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[6,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 15, 1, (a(n-1)*a(n-14) + a(n-7)*a(n-8))/a(n-15))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A271954 Somos's sequence {b(7,n)} defined in comment in A078495: a(0)=a(1)=...=a(16)=1; for n>=17, a(n)=(a(n-1)*a(n-16)+a(n-8)*a(n-9))/a(n-17).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 17, 29, 49, 79, 121, 177, 249, 597, 989, 1483, 2209, 3425, 5589, 9447, 16137, 36240, 109683, 273382, 574885, 1081260, 1898415, 3213378, 5381793, 15251949, 31924773, 78189885
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 17 select 1 else (Self(n-1)*Self(n-16)+Self(n-8)*Self(n-9))/Self(n-17): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[7,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 17, 1, (a(n-1)*a(n-16) + a(n-8)*a(n-9))/a(n-17))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A271955 Somos's sequence {b(8,n)} defined in comment in A078495: a(0)=a(1)=...=a(18)=1; for n>=19, a(n)=(a(n-1)*a(n-18)+a(n-9)*a(n-10))/a(n-19).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 30, 50, 80, 122, 178, 250, 340, 800, 1308, 1924, 2780, 4136, 6452, 10476, 17348, 28720, 61664, 179696, 439304, 910464, 1686704, 2905792, 4793624, 7753616, 12537856
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 19 select 1 else (Self(n-1)*Self(n-18)+Self(n-9)*Self(n-10))/Self(n-19): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[8,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 19, 1, (a(n-1)*a(n-18) + a(n-9)*a(n-10))/a(n-19))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A272038 Somos's sequence {b(9,n)} defined in comment in A078495: a(0)=a(1)=...=a(20)=1; for n>=21, a(n)=(a(n-1)*a(n-20)+a(n-10)*a(n-11))/a(n-21).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 19, 31, 51, 81, 123, 179, 251, 341, 451, 1045, 1691, 2451, 3459, 4977, 7467, 11679, 18755, 30349, 48763, 100474, 282777, 679512, 1391391, 2547414, 4327101
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Ruby
    def b(k, n)
      b = Array.new(2 * k + 3, 1)
      (2 * k + 3..n).each{|i|
        j = (b[i - 1] * b[i - 2 * k - 2] + b[i - k - 1] * b[i - k - 2]) / b[i - 2 * k - 3].to_r
        j = j.to_i if j.denominator == 1
        b[i] = j
      }
      b[0..n]
    end
    p b(9, n) # Seiichi Manyama, May 04 2016
Showing 1-6 of 6 results.