A268217 Triangle read by rows: T(n,k) (n>=3, k=3..n) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,2,3,4,...,s,n} where s is the size of the largest proper open set in t.
3, 6, 12, 10, 30, 60, 15, 60, 180, 360, 21, 105, 420, 1260, 2520, 28, 168, 840, 3360, 10080, 20160, 36, 252, 1512, 7560, 30240, 90720, 181440, 45, 360, 2520, 15120, 75600, 302400, 907200, 1814400, 55, 495, 3960, 27720, 166320, 831600, 3326400, 9979200, 19958400
Offset: 3
Examples
Triangle begins: 3; 6, 12; 10, 30, 60; 15, 60, 180, 360; 21, 105, 420, 1260, 2520; 28, 168, 840, 3360, 10080, 20160; 36, 252, 1512, 7560, 30240, 90720, 181440; 45, 360, 2520, 15120, 75600, 302400, 907200, 1814400; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..1277 (first 50 rows)
- G. A. Kamel, Partial Chain Topologies on Finite Sets, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.
- Eric Weisstein's World of Mathematics, Complete Graph.
- Eric Weisstein's World of Mathematics, Graph Path.
Crossrefs
Programs
-
Mathematica
i = 2; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0, n - i - 1}], {n, 2, 9}] // Grid (* Geoffrey Critzer, Feb 19 2017 *) CoefficientList[Table[-(1/2) (n - 1) n x^(n - 2) (Gamma[n - 1] - E^(1/x) Gamma[n - 1, 1/x]), {n, 3, 10}] // FunctionExpand, x] // Flatten (* Eric W. Weisstein, Jun 04 2017 *)
Extensions
Title clarified by Geoffrey Critzer, Feb 19 2017
Corrected and extended by Andrew Howroyd, Aug 09 2025
Comments