cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A049535 Starts of runs of exactly 6 consecutive nonsquarefree numbers.

Original entry on oeis.org

22020, 24647, 30923, 47672, 55447, 57120, 73447, 74848, 96675, 105772, 121667, 121847, 152339, 171348, 179972, 182347, 185247, 190447, 200848, 204323, 215303, 229172, 233223, 234375, 240424, 268223, 274547, 310120, 327424, 338920
Offset: 1

Views

Author

Keywords

Examples

			Squares dividing the numbers in the starting at 22020 are 4, 361, 121, 9, 4, 25, respectively.
		

Crossrefs

The smallest members of such strings of length k are listed in A045882.
Cf. A001694 powerful numbers, A013929 not squarefree.
Cf. A045882 (min terms), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • Maple
    Res:= NULL:
    st:= 0:
    for n from 1 to 500000 do
      if numtheory:-issqrfree(n) then
        if st = 6 then Res:= Res, n-6 fi;
        st:= 0;
      else
        st:= st+1;
      fi
    od:
    Res; # Robert Israel, Feb 08 2017
  • Mathematica
    Select[Range[400000], !SquareFreeQ[#] && !SquareFreeQ[#+1] && !SquareFreeQ[#+2] && !SquareFreeQ[#+3] && !SquareFreeQ[#+4] && !SquareFreeQ[#+5] && SquareFreeQ[#+6]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
    Flatten[Position[Partition[SquareFreeQ/@Range[60000],6,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)

Formula

{ A078144(k) | A078144(k+1) = A078144(k)+1 and A078144(k+2) > A078144(k)+2 }. - M. F. Hasler, Feb 01 2016

Extensions

Definition corrected by Donald S. McDonald, Nov 07 2002
Corrected by Robert Israel, Feb 08 2017

A077647 Smallest term of a run of at least 8 consecutive integers which are not squarefree.

Original entry on oeis.org

1092747, 7216618, 8870024, 8870025, 14379271, 22635347, 24816974, 25047846, 33678771, 33908368, 33908369, 34394371, 34682346, 37923938, 49250144, 49250145, 53379270, 69147868, 69147869, 70918820, 70918821, 71927247, 72913022, 83605071, 85972019, 90571646
Offset: 1

Views

Author

Labos Elemer, Nov 18 2002

Keywords

Examples

			n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}
		

Crossrefs

Cf. A045882 (first k-chain), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • Mathematica
    s8[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 7}]]; Do[If[s8[n] == 0, Print[n]], {n, 10^8}]
    Flatten[Position[Partition[SquareFreeQ/@Range[91000000],8,1],_?(Union[#]=={False}&),{1},Heads->False]]
  • PARI
    for(n=1,10^8,forstep(k=7,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016

Formula

A077647 = { A077640[k] | A077640[k+1] = A077640[k]+1 }. - M. F. Hasler, Feb 01 2016

A078143 Smallest term of a run of at least 9 consecutive integers which are not squarefree.

Original entry on oeis.org

8870024, 33908368, 49250144, 69147868, 70918820, 111500620, 112931372, 164786748, 167854344, 200997948, 203356712, 207543320, 211014920, 216785256, 221167422, 221167423, 221167424, 236645624, 240574368, 262315467, 262315468
Offset: 1

Views

Author

Labos Elemer, Nov 22 2002

Keywords

Comments

The sequence includes an infinite family of arithmetic progressions. Such AP's can be constructed to each term, with large differences [like squares of primorials, A061742(7)]. It is necessary to solve suitable systems of linear Diophantine equations. E.g.: arithmetic progression subsequences of starting 9-chains is {mk+69147868+j} where j=0..8, m=510510^2 because square prime factors of a(4)+j=68147868+j are 4, 49, 121, 169, 4, 9, 289, 25, 4 resp. for j=0..8; k goes to infinity; 7th primorial is sufficient, 9th is not necessary. Construction is provable for arbitrary long [>9] chains. - Labos Elemer, Nov 25 2002
More precisely, if in one run {a(n)+j, j=0..8} the maximum smallest square factor is p^2, then an infinite subsequence is given by {a(n)+(p#)^2*k, k=0..oo}, where p# = A034386(p). One may get a smaller step taking the least L^2 which has a square factor in common with each of the 9 consecutive terms. - M. F. Hasler, Feb 03 2016

Crossrefs

Cf. A013929, A045882 (first of the k-chains), A051681.
Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • Mathematica
    s9[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 8}]]; Do[If[Equal[s9[n], 0], Print[n]], {n, 8000000, 1000000000}]
  • PARI
    is(n)=for(i=n,n+8, if(!issquarefree(i), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017

Formula

A078143 = { A077647[k] | A077647[k+1] = A077647[k]+1 } = { A077640[k] | A077640[k+2] = A077640[k]+2 } = { A078144[k] | A078144[k+4] = A078144[k]+4 } etc. Note that A049535 is defined differently. - M. F. Hasler, Feb 01 2016
a(n) < 4666864390*n. With more work this bound can be decreased significantly. - Charles R Greathouse IV, Nov 05 2017

Extensions

a(6)-a(21) from Donovan Johnson, Nov 26 2008

A077640 Smallest term of a run of at least 7 consecutive integers which are not squarefree.

Original entry on oeis.org

217070, 671346, 826824, 1092747, 1092748, 1427370, 2097048, 2779370, 3112819, 3306444, 3597723, 3994820, 4063774, 4442874, 4630544, 4842474, 5436375, 5479619, 5610644, 5634122, 6315019, 6474220, 6626319, 6677864, 7128471, 7216618, 7216619, 7295448, 7507923
Offset: 1

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Examples

			n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}.
		

Crossrefs

Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • MATLAB
    N = 10^7; % to get all terms <= N-6
    T = zeros(1,N);
    for m = 2:floor(sqrt(N))
       T([m^2 : m^2 : N]) = 1;
    end
    S = T(1:N-6).*T(2:N-5).*T(3:N-4).*T(4:N-3).*T(5:N-2).*T(6:N-1).*T(7:N);
    find(S)  % Robert Israel, Feb 03 2016
    
  • Mathematica
    s7[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 6}]]; Do[If[s7[n] == 0, Print[n]], {n, 10^7}]
    Flatten[Position[Partition[SquareFreeQ/@Range[7000000],7,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)
    SequencePosition[Table[If[SquareFreeQ[n],0,1],{n,72*10^5}],{1,1,1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2017 *)
  • PARI
    {my(N=10^6, M=0, t, m2); for(m=2,sqrtint(N), t=1; m2=m^2; M=bitor(sum(i=1,N\m^2,t<<=m2),M)); for(i=1,6,M=bitand(M,M>>1)); for(i=0,N,M||break;print1(i+=t=valuation(M,2),",");M>>=t+1)} \\ Works but is much slower than the following (16s for 10^6 vs. 3s for 10^7). Should scale better (~sqrt(n) vs linear) but doesn't because of inefficient implementation of binary operations (copies & re-allocation of very large bitmaps): increasing N from 10^5 to 10^6 multiplies CPU time by a factor of 100!
    
  • PARI
    for(n=1,10^7,forstep(k=6,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016

Formula

A077640 = { A078144[k] | A078144[k+2] = A078144[k]+2 } = { A070284[k] | A070284[k+3] = A070284[k]+3 } etc. Note that A049535 is defined differently. - M. F. Hasler, Feb 01 2016
a(n) = A188347(n) - 3. - Amiram Eldar, Feb 09 2021

A268314 First term of a run of at least 11 consecutive integers which are not squarefree.

Original entry on oeis.org

221167422, 1407472722, 3639720042, 3865964268, 4982931368, 5005996146, 7108776620, 8044261244, 10249558974, 12766690268, 13585489166, 19792784322, 26995377572, 30410811296, 30477326444, 32070270968, 34317891368, 39956560824, 40841363528, 42216508746, 43133805944, 46295514872, 47255689915
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2016

Keywords

Comments

a(23) is the first term beginning a 12-chain. - Bill Hannaford, Oct 06 2016

Crossrefs

Cf. A013929, A045882 (first of the k-chains), A051681.
Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains).

Programs

  • Mathematica
    s11[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 10}]]; Do[If[Equal[s11[n], 0], Print[n]], {n, 10^8, 10^13}]

Formula

A268314 = { A268313[k] | A268313[k+1] = A268313[k]+1 } = { A078143[k] | A078143[k+2] = A078143[k]+2 } = { A077647[k] | A077647[k+3] = A077647[k]+3 } = { A077640[k] | A077640[k+4] = A077640[k]+4 }.

Extensions

a(12)-a(23) from Bill Hannaford, Oct 06 2016
Showing 1-5 of 5 results.