A049535
Starts of runs of exactly 6 consecutive nonsquarefree numbers.
Original entry on oeis.org
22020, 24647, 30923, 47672, 55447, 57120, 73447, 74848, 96675, 105772, 121667, 121847, 152339, 171348, 179972, 182347, 185247, 190447, 200848, 204323, 215303, 229172, 233223, 234375, 240424, 268223, 274547, 310120, 327424, 338920
Offset: 1
Squares dividing the numbers in the starting at 22020 are 4, 361, 121, 9, 4, 25, respectively.
The smallest members of such strings of length k are listed in
A045882.
Cf.
A045882 (min terms),
A068781 (2-chains),
A070258 (3-chains),
A070284 (4-chains),
A078144 (5-chains),
A049535 (6-chains),
A077640 (7-chains),
A077647 (8-chains),
A078143 (9-chains),
A268313 (10-chains),
A268314 (11-chains).
-
Res:= NULL:
st:= 0:
for n from 1 to 500000 do
if numtheory:-issqrfree(n) then
if st = 6 then Res:= Res, n-6 fi;
st:= 0;
else
st:= st+1;
fi
od:
Res; # Robert Israel, Feb 08 2017
-
Select[Range[400000], !SquareFreeQ[#] && !SquareFreeQ[#+1] && !SquareFreeQ[#+2] && !SquareFreeQ[#+3] && !SquareFreeQ[#+4] && !SquareFreeQ[#+5] && SquareFreeQ[#+6]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
Flatten[Position[Partition[SquareFreeQ/@Range[60000],6,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)
A077647
Smallest term of a run of at least 8 consecutive integers which are not squarefree.
Original entry on oeis.org
1092747, 7216618, 8870024, 8870025, 14379271, 22635347, 24816974, 25047846, 33678771, 33908368, 33908369, 34394371, 34682346, 37923938, 49250144, 49250145, 53379270, 69147868, 69147869, 70918820, 70918821, 71927247, 72913022, 83605071, 85972019, 90571646
Offset: 1
n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}
Cf.
A045882 (first k-chain),
A068781 (2-chains),
A070258 (3-chains),
A070284 (4-chains),
A078144 (5-chains),
A049535 (6-chains),
A077640 (7-chains),
A077647 (8-chains),
A078143 (9-chains),
A268313 (10-chains),
A268314 (11-chains).
-
s8[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 7}]]; Do[If[s8[n] == 0, Print[n]], {n, 10^8}]
Flatten[Position[Partition[SquareFreeQ/@Range[91000000],8,1],_?(Union[#]=={False}&),{1},Heads->False]]
-
for(n=1,10^8,forstep(k=7,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016
A078143
Smallest term of a run of at least 9 consecutive integers which are not squarefree.
Original entry on oeis.org
8870024, 33908368, 49250144, 69147868, 70918820, 111500620, 112931372, 164786748, 167854344, 200997948, 203356712, 207543320, 211014920, 216785256, 221167422, 221167423, 221167424, 236645624, 240574368, 262315467, 262315468
Offset: 1
-
s9[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 8}]]; Do[If[Equal[s9[n], 0], Print[n]], {n, 8000000, 1000000000}]
-
is(n)=for(i=n,n+8, if(!issquarefree(i), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017
A077640
Smallest term of a run of at least 7 consecutive integers which are not squarefree.
Original entry on oeis.org
217070, 671346, 826824, 1092747, 1092748, 1427370, 2097048, 2779370, 3112819, 3306444, 3597723, 3994820, 4063774, 4442874, 4630544, 4842474, 5436375, 5479619, 5610644, 5634122, 6315019, 6474220, 6626319, 6677864, 7128471, 7216618, 7216619, 7295448, 7507923
Offset: 1
n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}.
-
N = 10^7; % to get all terms <= N-6
T = zeros(1,N);
for m = 2:floor(sqrt(N))
T([m^2 : m^2 : N]) = 1;
end
S = T(1:N-6).*T(2:N-5).*T(3:N-4).*T(4:N-3).*T(5:N-2).*T(6:N-1).*T(7:N);
find(S) % Robert Israel, Feb 03 2016
-
s7[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 6}]]; Do[If[s7[n] == 0, Print[n]], {n, 10^7}]
Flatten[Position[Partition[SquareFreeQ/@Range[7000000],7,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)
SequencePosition[Table[If[SquareFreeQ[n],0,1],{n,72*10^5}],{1,1,1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2017 *)
-
{my(N=10^6, M=0, t, m2); for(m=2,sqrtint(N), t=1; m2=m^2; M=bitor(sum(i=1,N\m^2,t<<=m2),M)); for(i=1,6,M=bitand(M,M>>1)); for(i=0,N,M||break;print1(i+=t=valuation(M,2),",");M>>=t+1)} \\ Works but is much slower than the following (16s for 10^6 vs. 3s for 10^7). Should scale better (~sqrt(n) vs linear) but doesn't because of inefficient implementation of binary operations (copies & re-allocation of very large bitmaps): increasing N from 10^5 to 10^6 multiplies CPU time by a factor of 100!
-
for(n=1,10^7,forstep(k=6,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016
A268313
First term of a run of at least 10 consecutive integers which are not squarefree.
Original entry on oeis.org
221167422, 221167423, 262315467, 363504972, 463239475, 1202800371, 1407472722, 1407472723, 1557947844, 1609077723, 1911823144, 2217728772, 2695179044, 2737800168, 2847305571, 3639720042, 3639720043, 3672883247, 3865964268, 3865964269, 3982659575, 4246929267, 4818537743, 4982931368
Offset: 1
-
s10[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 9}]]; Do[If[Equal[s10[n], 0], Print[n]], {n, 10^8, 10^10}]
Showing 1-5 of 5 results.
Comments