cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A068781 Lesser of two consecutive numbers each divisible by a square.

Original entry on oeis.org

8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024

Examples

			44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
  (4,8)
  (9,12,16,18,20,24)
  (25,27)
  (28,32,36,40,44)
  (45,48)
  (49)
  (50,52,54,56,60,63)
  (64,68,72,75)
  (76,80)
  (81,84,88,90,92,96,98)
  (99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
		

Crossrefs

Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Haskell
    a068781 n = a068781_list !! (n-1)
    a068781_list = filter ((== 0) . a261869) [1..]
    -- Reinhard Zumkeller, Sep 04 2015
    
  • Mathematica
    Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
    f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
    Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
  • PARI
    isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021

Formula

A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015

A045882 Smallest term of first run of (at least) n consecutive integers which are not squarefree.

Original entry on oeis.org

4, 8, 48, 242, 844, 22020, 217070, 1092747, 8870024, 221167422, 221167422, 47255689915, 82462576220, 1043460553364, 79180770078548, 3215226335143218, 23742453640900972, 125781000834058568
Offset: 1

Views

Author

Keywords

Comments

Solution for n=10 is same as for n=11.
This sequence is infinite and each term initiates a suitable arithmetic progression with large differences like squares of primorials or other suitable products of primes from prime factors being on power 2 in terms and in chains after. Proof includes solution of linear Diophantine equations and math. induction. See also A068781, A070258, A070284, A078144, A049535, A077640, A077647, A078143 of which first terms are recollected here. - Labos Elemer, Nov 25 2002

Examples

			a(3) = 48 as 48, 49 and 50 are divisible by squares.
n=5 -> {844=2^2*211; 845=5*13^2; 846=2*3^2*47; 847=7*11^2; 848=2^4*53}.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.

Crossrefs

Cf. A013929, A053806, A049535, A077647, A078143. Also A069021 and A051681 are different versions.

Programs

  • Mathematica
    cnt = 0; k = 0; Table[While[cnt < n, k++; If[! SquareFreeQ[k], cnt++, cnt = 0]]; k - n + 1, {n, 7}]
  • PARI
    a(n)=my(s);for(k=1,9^99,if(issquarefree(k),s=0,if(s++==n,return(k-n+1)))) \\ Charles R Greathouse IV, May 29 2013

Formula

a(n) = 1 + A020754(n+1). - R. J. Mathar, Jun 25 2010
Correction from Jeppe Stig Nielsen, Mar 05 2022: (Start)
a(n) = 1 + A020754(n+1) for 1 <= n < 11.
a(n) = 1 + A020754(n) for 11 <= n < N where N is unknown.
Possibly a(n) = 1 + A020754(n-d) for some higher n, depending on how many repeated terms the sequence has. (End)
a(n) <= A061742(n) = A002110(n)^2 is the trivial bound obtained from the CRT. - Charles R Greathouse IV, Sep 06 2022

Extensions

a(9)-a(11) from Patrick De Geest, Nov 15 1998, Jan 15 1999
a(12)-a(15) from Louis Marmet (louis(AT)marmet.org) and David Bernier (ezcos(AT)yahoo.com), Nov 15 1999
a(16) was obtained as a result of a team effort by Z. McGregor-Dorsey et al. [Louis Marmet (louis(AT)marmet.org), Jul 27 2000]
a(17) was obtained as a result of a team effort by E. Wong et al. [Louis Marmet (louis(AT)marmet.org), Jul 13 2001]
a(18) was obtained as a result of a team effort by L. Marmet et al.

A070284 Smallest of 4 consecutive numbers each divisible by a square.

Original entry on oeis.org

242, 844, 845, 1680, 1681, 2888, 2889, 3174, 3624, 3625, 3750, 5046, 5047, 8475, 8523, 8954, 10050, 10827, 10924, 10925, 11322, 13374, 14748, 14749, 15775, 15848, 15849, 16575, 17404, 17405, 19647, 19940, 19941, 20574, 21462
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 09 2002

Keywords

Comments

This sequence has positive density in N; the density is around 0.0025.
The sequence includes an infinite family of arithmetic progressions. Such AP's can be constructed to each term, with large differences [like e.g. square of primorials, A061742]. It is necessary to solve suitable systems of linear Diophantine equations. E.g.: subsequences of quadruples of terms = {44100k+29349, 44100k+29350, 44100k+29351, 44100k+29352} = {9(4900k+3261), 25(1764k+1174), 49(900k+599), 4(11025k+7338)}; starting terms in this sequence = {29349, 73449, 117549, ...}; difference = A002110(4)^2 = 210^2. - Labos Elemer, Nov 25 2002

Crossrefs

Programs

  • Mathematica
    f[n_] := Union[Transpose[FactorInteger[n]][[2]]][[ -1]]; a = 0; b = 1; c = 0; Do[d = f[n]; If[a > 1 && b > 1 && c > 1 && d > 1, Print[n - 3]]; a = b; b = c; c = d, {n, 4, 10^6}]
    Flatten[Position[Partition[SquareFreeQ/@Range[60000],4,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)
  • PARI
    is(n)=for(i=n,n+3, if(!issquarefree(n), return(0))); 1 \\ Charles R Greathouse IV, Sep 14 2015

Formula

A070284 = { A070258[k] | A070258[k+1] = A070258[k]+1 }. - M. F. Hasler, Feb 01 2016

Extensions

More terms from Robert G. Wilson v, May 09 2002
b-file from Charles R Greathouse IV, Jul 23 2010

A049535 Starts of runs of exactly 6 consecutive nonsquarefree numbers.

Original entry on oeis.org

22020, 24647, 30923, 47672, 55447, 57120, 73447, 74848, 96675, 105772, 121667, 121847, 152339, 171348, 179972, 182347, 185247, 190447, 200848, 204323, 215303, 229172, 233223, 234375, 240424, 268223, 274547, 310120, 327424, 338920
Offset: 1

Views

Author

Keywords

Examples

			Squares dividing the numbers in the starting at 22020 are 4, 361, 121, 9, 4, 25, respectively.
		

Crossrefs

The smallest members of such strings of length k are listed in A045882.
Cf. A001694 powerful numbers, A013929 not squarefree.
Cf. A045882 (min terms), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • Maple
    Res:= NULL:
    st:= 0:
    for n from 1 to 500000 do
      if numtheory:-issqrfree(n) then
        if st = 6 then Res:= Res, n-6 fi;
        st:= 0;
      else
        st:= st+1;
      fi
    od:
    Res; # Robert Israel, Feb 08 2017
  • Mathematica
    Select[Range[400000], !SquareFreeQ[#] && !SquareFreeQ[#+1] && !SquareFreeQ[#+2] && !SquareFreeQ[#+3] && !SquareFreeQ[#+4] && !SquareFreeQ[#+5] && SquareFreeQ[#+6]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
    Flatten[Position[Partition[SquareFreeQ/@Range[60000],6,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)

Formula

{ A078144(k) | A078144(k+1) = A078144(k)+1 and A078144(k+2) > A078144(k)+2 }. - M. F. Hasler, Feb 01 2016

Extensions

Definition corrected by Donald S. McDonald, Nov 07 2002
Corrected by Robert Israel, Feb 08 2017

A077647 Smallest term of a run of at least 8 consecutive integers which are not squarefree.

Original entry on oeis.org

1092747, 7216618, 8870024, 8870025, 14379271, 22635347, 24816974, 25047846, 33678771, 33908368, 33908369, 34394371, 34682346, 37923938, 49250144, 49250145, 53379270, 69147868, 69147869, 70918820, 70918821, 71927247, 72913022, 83605071, 85972019, 90571646
Offset: 1

Views

Author

Labos Elemer, Nov 18 2002

Keywords

Examples

			n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}
		

Crossrefs

Cf. A045882 (first k-chain), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • Mathematica
    s8[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 7}]]; Do[If[s8[n] == 0, Print[n]], {n, 10^8}]
    Flatten[Position[Partition[SquareFreeQ/@Range[91000000],8,1],_?(Union[#]=={False}&),{1},Heads->False]]
  • PARI
    for(n=1,10^8,forstep(k=7,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016

Formula

A077647 = { A077640[k] | A077640[k+1] = A077640[k]+1 }. - M. F. Hasler, Feb 01 2016

A078144 Starts for strings of at least five consecutive nonsquarefree numbers.

Original entry on oeis.org

844, 1680, 2888, 3624, 5046, 10924, 14748, 15848, 17404, 19940, 22020, 22021, 22624, 23272, 24647, 24648, 25772, 29348, 30248, 30923, 30924, 33172, 36700, 37248, 38724, 39444, 40472, 45372, 47672, 47673, 47724, 47824, 48372, 49488
Offset: 1

Views

Author

Labos Elemer, Nov 25 2002

Keywords

Examples

			Squares dividing 5-string=844+j, j=0,..,4 are as follows:4,169,9,121,16 resp. Each term initiates an arithmetic progression with suitable large difference. Such progressions are constructible by solving suitable linear Diophantine equations. E.g., quintet = {m*k+3689649, m*k+3689650, m*k+3689651, m*k+3689652, m*k+3689653} = {9*(592900*k+409961), 25*(213444*k+147586), 49*(108900*k+75299), 4*(1334025*k+922413), 121*(44100*k+30493)}; m=2310*2310=A002110(5)^2=A061742(5)=5336100.
		

Crossrefs

Cf. A045882 (min terms), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077647 (8-chains), A078143 (9-chains), A188296.

Programs

Formula

Equals { A070284[k] | A070284[k+1] = A070284[k]+1 }. - M. F. Hasler, Feb 01 2016
a(n) = A188296(n) - 2. - Amiram Eldar, Feb 09 2021

A077640 Smallest term of a run of at least 7 consecutive integers which are not squarefree.

Original entry on oeis.org

217070, 671346, 826824, 1092747, 1092748, 1427370, 2097048, 2779370, 3112819, 3306444, 3597723, 3994820, 4063774, 4442874, 4630544, 4842474, 5436375, 5479619, 5610644, 5634122, 6315019, 6474220, 6626319, 6677864, 7128471, 7216618, 7216619, 7295448, 7507923
Offset: 1

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Examples

			n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}.
		

Crossrefs

Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • MATLAB
    N = 10^7; % to get all terms <= N-6
    T = zeros(1,N);
    for m = 2:floor(sqrt(N))
       T([m^2 : m^2 : N]) = 1;
    end
    S = T(1:N-6).*T(2:N-5).*T(3:N-4).*T(4:N-3).*T(5:N-2).*T(6:N-1).*T(7:N);
    find(S)  % Robert Israel, Feb 03 2016
    
  • Mathematica
    s7[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 6}]]; Do[If[s7[n] == 0, Print[n]], {n, 10^7}]
    Flatten[Position[Partition[SquareFreeQ/@Range[7000000],7,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)
    SequencePosition[Table[If[SquareFreeQ[n],0,1],{n,72*10^5}],{1,1,1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2017 *)
  • PARI
    {my(N=10^6, M=0, t, m2); for(m=2,sqrtint(N), t=1; m2=m^2; M=bitor(sum(i=1,N\m^2,t<<=m2),M)); for(i=1,6,M=bitand(M,M>>1)); for(i=0,N,M||break;print1(i+=t=valuation(M,2),",");M>>=t+1)} \\ Works but is much slower than the following (16s for 10^6 vs. 3s for 10^7). Should scale better (~sqrt(n) vs linear) but doesn't because of inefficient implementation of binary operations (copies & re-allocation of very large bitmaps): increasing N from 10^5 to 10^6 multiplies CPU time by a factor of 100!
    
  • PARI
    for(n=1,10^7,forstep(k=6,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016

Formula

A077640 = { A078144[k] | A078144[k+2] = A078144[k]+2 } = { A070284[k] | A070284[k+3] = A070284[k]+3 } etc. Note that A049535 is defined differently. - M. F. Hasler, Feb 01 2016
a(n) = A188347(n) - 3. - Amiram Eldar, Feb 09 2021

A268313 First term of a run of at least 10 consecutive integers which are not squarefree.

Original entry on oeis.org

221167422, 221167423, 262315467, 363504972, 463239475, 1202800371, 1407472722, 1407472723, 1557947844, 1609077723, 1911823144, 2217728772, 2695179044, 2737800168, 2847305571, 3639720042, 3639720043, 3672883247, 3865964268, 3865964269, 3982659575, 4246929267, 4818537743, 4982931368
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2016

Keywords

Crossrefs

Cf. A013929, A045882 (first of the k-chains), A051681.
Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268314 (11-chains).

Programs

  • Mathematica
    s10[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 9}]]; Do[If[Equal[s10[n], 0], Print[n]], {n, 10^8, 10^10}]

Formula

A268313 = { A078143[k] | A078143[k+1] = A078143[k]+1 } = { A077647[k] | A077647[k+2] = A077647[k]+2 } = { A077640[k] | A077640[k+3] = A077640[k]+3 }.

A268314 First term of a run of at least 11 consecutive integers which are not squarefree.

Original entry on oeis.org

221167422, 1407472722, 3639720042, 3865964268, 4982931368, 5005996146, 7108776620, 8044261244, 10249558974, 12766690268, 13585489166, 19792784322, 26995377572, 30410811296, 30477326444, 32070270968, 34317891368, 39956560824, 40841363528, 42216508746, 43133805944, 46295514872, 47255689915
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2016

Keywords

Comments

a(23) is the first term beginning a 12-chain. - Bill Hannaford, Oct 06 2016

Crossrefs

Cf. A013929, A045882 (first of the k-chains), A051681.
Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains).

Programs

  • Mathematica
    s11[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 10}]]; Do[If[Equal[s11[n], 0], Print[n]], {n, 10^8, 10^13}]

Formula

A268314 = { A268313[k] | A268313[k+1] = A268313[k]+1 } = { A078143[k] | A078143[k+2] = A078143[k]+2 } = { A077647[k] | A077647[k+3] = A077647[k]+3 } = { A077640[k] | A077640[k+4] = A077640[k]+4 }.

Extensions

a(12)-a(23) from Bill Hannaford, Oct 06 2016

A268270 Least prime that is at distance > n from the nearest squarefree number.

Original entry on oeis.org

2, 17, 727, 47527, 29002021, 494501773, 44633461423, 7489886099881
Offset: 0

Views

Author

Keywords

Examples

			a(0)=2 is the least prime and it is at distance 1 from the nearest squarefree numbers (1 and/or 3).
a(1)=17 is the least prime that has no squarefree neighbor: both 16 and 18 are divisible by a square; the nearest squarefree numbers, 15 and 19, are both at distance 2.
a(2)=727 is the least prime p such that p-2 and p+1 are (two consecutive terms) in A068781, namely A068781(75..76).
a(3)=47527 is the least prime p such that p-3 and p+1 are (two consecutive terms) in A070258, namely A070258(878..879).
a(4)=29002021 is the least prime p such that p-4 and p+1 are (two consecutive terms) in A070284.
a(5)=494501773 is the least prime p such that p-5 and p+1 are (two consecutive terms) in A078144.
Similarly, for n = 6, 7, 8 and 9, a(n) is the least prime p such that p-n and p+1 are (two consecutive terms) in A049535, A077640, A077647 and A078143, respectively.
		

Crossrefs

Programs

  • PARI
    a(n)=forprime(p=n,,for(s=1,n,(issquarefree(p-s)||issquarefree(p+s)) && next(2)); return(p))

Extensions

a(4) corrected and a(5) computed by Christopher E. Thompson, Jan 20 2016
a(6)-a(7) from Bert Dobbelaere, Jan 28 2019
Showing 1-10 of 10 results.