cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268462 Expansion of (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4.

Original entry on oeis.org

0, 0, 0, 0, 10, 56, 224, 768, 2400, 7040, 19712, 53248, 139776, 358400, 901120, 2228224, 5431296, 13074432, 31129600, 73400320, 171573248, 397934592, 916455424, 2097152000, 4771020800, 10796138496, 24310185984, 54492397568, 121634816000, 270448721920, 599147937792
Offset: 0

Views

Author

Ran Pan, Feb 04 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which total number of east steps below y = x-1 or above y = x+1 is exactly three. Details can be found in Section 4.1 in Pan and Remmel's link.

Programs

  • Magma
    I:=[0,0,0,0,10,56,224]; [n le 7 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 05 2016
    
  • Mathematica
    CoefficientList[Series[(2 x^4 (5 - 12 x + 8 x^2)) / (1 - 2 x)^4, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 05 2016 *)
    LinearRecurrence[{8,-24,32,-16},{0,0,0,0,10,56,224},40] (* Harvey P. Dale, Feb 10 2022 *)
  • PARI
    concat(vector(4), Vec(2*x^4*(5-12*x+8*x^2)/(1-2*x)^4 + O(x^100))) \\ Colin Barker, Feb 08 2016

Formula

G.f.: (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4.
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. - Vincenzo Librandi, Feb 05 2016
a(n) = 2^(n-4)*(n-3)*(n+1)*(n+2)/3 for n>2. - Colin Barker, Feb 08 2016