A268513 Numbers n such that bigomega(n) = bigomega(n*(n+1)+41).
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47, 49, 53, 59, 61, 65, 67, 71, 73, 79, 82, 83, 87, 91, 97, 101, 103, 107, 113, 121, 122, 123, 131, 137, 139, 143, 149, 151, 155, 157, 159, 161, 167, 178, 179, 181, 185, 187, 191, 193, 197, 199
Offset: 1
Keywords
Examples
Let eu(x) = x*(x + 1) + 41 and n-AP= n-almost prime, then: both 2 and eu(2)=47 are primes, both 49=7*7 and eu(49)=47*53 are semiprimes, both 574=2*7*41 and eu(574)=41*83*97 are 3-AP, both 3484=2^2*13*67 and eu(3484)=12141781=41*43*71*97 are 4-AP, both 54224=2^4*3389 and eu(2940296441)=43^2*61*131*199 are 5-AP, both 506022=2*3*11^2*17*41 and eu(506022)=41*43^2*71*113*421 are 6-AP, both 7375900=2^2*5^2*7*41*257 and eu(7375900)=41*47*53*71^2*251*421 are 7-AP, both 151072290=2*3^4*5*41*4549 and eu(151072290)=41*47*61*83*113^2*167*1097 are 8-AP.
Links
- Zak Seidov, Table of n, a(n) for n = 1..20000
Programs
-
Magma
[n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq &+[d[2]: d in Factorization(n^2+n+41)] ]; // Vincenzo Librandi, Feb 08 2016
-
Mathematica
Select[Range[100], PrimeOmega[#] == PrimeOmega[# (# + 1) + 41] &]
-
PARI
isok(n) = bigomega(n) == bigomega(n^2+n+41); \\ Michel Marcus, Feb 07 2016