cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268587 Expansion of x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4.

Original entry on oeis.org

0, 0, 0, 0, 5, 24, 85, 264, 760, 2080, 5488, 14080, 35328, 87040, 211200, 505856, 1198080, 2809856, 6533120, 15073280, 34537472, 78643200, 178061312, 401080320, 899153920, 2006974464, 4461690880, 9881780224, 21810380800, 47982837760, 105243475968
Offset: 0

Views

Author

Ran Pan, Feb 07 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly three east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • GAP
    Concatenation([0,0,0,0], List([3..40], n-> 2^(n-7)*(n-3)*(n+4)*(n+11)/3 )); # G. C. Greubel, May 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4*(5-16*x+13*x^2)/(1-2*x)^4 )); // G. C. Greubel, May 24 2019
    
  • Maple
    F:= gfun:-rectoproc({16*a(n)-32*a(n+1)+24*a(n+2)-8*a(n+3)+a(n+4), a(0)=0, a(1)=0,a(2)=0,a(3)=0,a(4)=5,a(5)=24,a(6)=85},a(n),remember):
    map(F, [$0..40]); # Robert Israel, Feb 07 2016
  • Mathematica
    CoefficientList[Series[x^4 (5 -16x +13x^2)/(1-2x)^4, {x, 0, 40}], x] (* Michael De Vlieger, Feb 08 2016 *)
    LinearRecurrence[{8,-24,32,-16},{0,0,0,0,5,24,85},40] (* Harvey P. Dale, Feb 22 2025 *)
  • PARI
    concat(vector(4), Vec(x^4*(5-16*x+13*x^2)/(1-2*x)^4 + O(x^40))) \\ Colin Barker, Feb 08 2016
    
  • Sage
    (x^4*(5-16*x+13*x^2)/(1-2*x)^4).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
    

Formula

G.f.: x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 6.
a(n) = 2^(n-7)*(n-3)*(n+4)*(n+11)/3 for n > 2. (End)
E.g.f.: (33 + 60*x + 39*x^2 + (-33 + 6*x + 15*x^2 + 2*x^3)*exp(2*x))/96. - G. C. Greubel, May 24 2019

Extensions

Typo in name and g.f. corrected by Georg Fischer, May 24 2019