cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268839 a(n) = Sum_{j=1..10^n-1} 2^f(j) where f(j) is the number of zero digits in the decimal representation of j.

Original entry on oeis.org

9, 108, 1197, 13176, 144945, 1594404, 17538453, 192922992, 2122152921, 23343682140, 256780503549, 2824585539048, 31070440929537, 341774850224916, 3759523352474085, 41354756877214944, 454902325649364393, 5003925582143008332, 55043181403573091661
Offset: 1

Views

Author

Michel Lagneau, Feb 14 2016

Keywords

Comments

We calculate the number of integers between 1 and 10^n - 1 having k zeros in their decimal representation. To form a such number consisting of m digits (k < m), place k zeros in m-1 possible positions, then we must choose m-k digits different from zero. Thus, the number of integers between 1 and 10^n - 1 having k zeros in their decimal representation is: Sum_{m=k+1..n} binomial(m-1, k)*9^(m-k).
Hence the sum: Sum_{m=1..n} Sum_{k=0..m-1} binomial(m-1,k)*9^(m-k)*2^k = Sum_{m=1..n} 9^m*(11/9)*(m-1) = (9/10)*(11^n - 1).

Examples

			a(1) = 9 because 2^f(1) + 2^f(2) + ... + 2^f(9) = 2^0 + 2^0 + ... + 2^0 = 9;
a(2) = 108 because 2^f(1) + 2^f(2) + ... + 2^f(99) = 9*10 + 2*9 = 108, where f(10) = f(20) = ... = f(90) = 1 and f(i) = 0 otherwise.
		

Crossrefs

Programs

  • Magma
    [(9/10)*(11^n-1): n in [1..20]]; // Vincenzo Librandi, Feb 15 2016
    
  • Maple
    for n from 1 to 100 do: x:=(9/10)*(11^n-1):printf(‘%d, ‘,x):od:
  • Mathematica
    Table[Table[(9/10) (11^n - 1), {n, 1, 20}]] (* Bruno Berselli, Feb 15 2016 *)
    CoefficientList[Series[9/((1 - 11 x) (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 15 2016 *)
  • PARI
    Vec(9*x/((1-11*x)*(1-x)) + O(x^30)) \\ Colin Barker, Feb 22 2016

Formula

a(n) = (9/10)*(11^n-1) = 9*A016123(n-1).
From Vincenzo Librandi, Feb 15 2016: (Start)
G.f.: (9*x)/((1-11*x)*(1-x)).
a(n) = 11*a(n-1) + 9. (End)
E.g.f.: 9*exp(x)*(exp(10*x) - 1)/10. - Stefano Spezia, Sep 13 2023

Extensions

Name edited by Jon E. Schoenfield, Sep 13 2017