A269100 a(n) = 13*n + 11.
11, 24, 37, 50, 63, 76, 89, 102, 115, 128, 141, 154, 167, 180, 193, 206, 219, 232, 245, 258, 271, 284, 297, 310, 323, 336, 349, 362, 375, 388, 401, 414, 427, 440, 453, 466, 479, 492, 505, 518, 531, 544, 557, 570, 583, 596, 609, 622, 635, 648, 661, 674, 687, 700, 713, 726, 739
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Magma
[13*n+11: n in [0..60]];
-
Mathematica
13 Range[0,60] + 11 Range[11, 800, 13] Table[13 n + 11, {n, 0, 60}] (* Bruno Berselli, Feb 22 2016 *) LinearRecurrence[{2,-1},{11,24},60] (* Harvey P. Dale, Jun 14 2023 *)
-
Maxima
makelist(13*n+11, n, 0, 60);
-
PARI
vector(60, n, n--; 13*n+11)
-
Python
[13*n+11 for n in range(61)]
-
Sage
[13*n+11 for n in range(61)]
Formula
G.f.: (11 + 2*x)/(1 - x)^2.
a(n) = -A153080(-n-1).
Sum_{i = h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 35)/2).
Sum_{i >= 0} 1/a(i)^2 = .012486605016510955990... = polygamma(1, 11/13)/13^2.
E.g.f.: (11 + 13*x)*exp(x). - G. C. Greubel, May 31 2024
Comments