cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269259 Primes p such that p+2^4, p+2^6, p+2^8, p+2^10 and p+2^12 are all primes.

Original entry on oeis.org

37, 163, 15667, 22093, 40177, 47287, 53593, 114577, 120607, 142543, 234067, 242377, 255907, 263047, 263803, 305407, 388117, 444607, 460387, 503287, 527143, 607093, 671353, 784897, 904663, 938947, 1063903, 1086493, 1172803, 1216807, 1233523, 1288543
Offset: 1

Views

Author

Keywords

Examples

			The prime 37 is in the sequence, since 37 + 16 = 53, 37 + 64 = 101, 37 + 256 = 293, 37 + 1024 = 1061 and 37 + 4096 = 4133 are all primes.
The prime 163 is in the sequence, since 163 + 16 = 179, 163 + 64 = 227, 163 + 256 = 419, 163 + 1024 = 1187 and 163 + 4096 = 4259 are all primes.
		

Crossrefs

Subsequence of A269258.
Cf. A269257.

Programs

  • Magma
    [p: p in PrimesInInterval(2,1600000) | forall{i: i in [16,64,256,1024,4096] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 16 2016
  • Mathematica
    m = {2^4, 2^6, 2^8, 2^10, 2^12}; Select[Prime@ Range[2*10^5], Times @@ Boole@ PrimeQ[# + m] == 1 &] (* Michael De Vlieger, Jul 13 2016 *)
  • PARI
    is(n) = for(k=2, 6, if(!ispseudoprime(2^(2*k)+n), return(0))); return(1)
    forprime(p=1, 16e5, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Jul 12 2016
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(2,1e6, 16,64,256,1024,4096); # Dana Jacobsen, Jul 13 2016