cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269266 a(n) = 2^n mod 31.

Original entry on oeis.org

1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1
Offset: 0

Views

Author

Vincenzo Librandi, Mar 31 2016

Keywords

References

  • Continued fraction expansion of (1651+sqrt(3236405))/2386. - Bruno Berselli, Mar 31 2016

Crossrefs

Cf. A201912 (11th row of the triangle).
Cf. similar sequences of the type 2^n mod p, where p is a prime: A000034 (p=3), A070402 (p=5), A069705 (p=7), A036117 (p=11), A036118 (p=13), A062116 (p=17), A036120 (p=19), A070335 (p=23), A036122 (p=29), this sequence (p=31), A036124 (p=37), A070348 (p=41), A070349 (p=43), A070351 (p=47), A036128 (p=53), A036129 (p=59), A036130 (p=61), A036131 (p=67).

Programs

  • GAP
    List([0..70],n->PowerMod(2,n,31)); # Muniru A Asiru, Jan 30 2019
  • Magma
    [Modexp(2, n, 31): n in [0..100]];
    
  • Magma
    &cat [[1,2,4,8,16]^^20] // Bruno Berselli, Mar 31 2016
    
  • Mathematica
    PowerMod[2, Range[0, 100], 31]
  • PARI
    a(n)=2^(n%5) \\ Charles R Greathouse IV, Mar 31 2016
    
  • PARI
    x='x+O('x^99); Vec((1+2*x+4*x^2+8*x^3+16*x^4)/(1-x^5)) \\ Altug Alkan, Mar 31 2016
    
  • Python
    for n in range(0,100):print(2**n%31) # Soumil Mandal, Apr 03 2016
    
  • Python
    def A269266(n): return pow(2,n,31) # Chai Wah Wu, Jan 03 2022
    
  • Sage
    [2^mod(n,5) for n in (0..100)] # Bruno Berselli, Mar 31 2016
    

Formula

G.f.: (1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4)/(1 - x^5).
a(n) = a(n-5).
a(n) = 2^(n mod 5). - Bruno Berselli, Mar 31 2016