A269443 Continued fraction expansion of the Dirichlet eta function at 2.
0, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 4, 1, 1, 1, 1, 1, 1, 4, 1, 6, 3, 7, 1, 7, 3, 3, 2, 4, 2, 2, 1, 1, 2, 1, 1, 3, 2, 1, 5, 1, 3, 1, 2, 1, 1, 13, 40, 1, 1, 1, 48, 211, 4, 91, 1, 16, 9, 1, 10, 8, 2, 4, 1, 2, 3, 2, 1, 1, 13, 3, 1, 2, 2, 1, 3, 1, 18, 2, 1, 1, 1, 5, 3, 7, 1, 1, 21, 1, 6, 4, 1, 1, 2, 1, 3, 2
Offset: 0
Examples
1/1^2 - 1/2^2 + 1/3^2 - 1/4^2 + 1/5^2 - 1/6^2 +... = 1/(1 + 1/(4 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + 1/...)))))).
Links
- OEIS Wiki, Euler's alternating zeta function
- Eric Weisstein's World of Mathematics, Dirichlet Eta Function
- Wikipedia, Dirichlet Eta Function
- Index entries for continued fractions for constants
Programs
-
Mathematica
ContinuedFraction[Pi^2/12, 100]
-
PARI
contfrac(Pi^2/12) \\ Michel Marcus, Feb 26 2016
Comments