cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269663 Semiprimes which are the product of a twin prime pair minus one.

Original entry on oeis.org

14, 34, 142, 898, 1762, 5182, 19042, 79522, 213442, 359998, 412162, 685582, 777922, 1192462, 1695202, 2585662, 4536898, 5143822, 5673922, 7225342, 12446782, 12659362, 12830722, 17040382, 17892898, 18818242, 20684302, 25100098, 32970562, 37601422, 46131262, 48441598
Offset: 1

Views

Author

K. D. Bajpai, Mar 02 2016

Keywords

Comments

Subsequence of A103533 and A001358.
All the terms in this sequence, except a(1), are congruent to 1 (mod 3).

Examples

			a(1) = 14 = 2 * 7 that is semiprime. Also, 3 * 5 - 1 = 14 where {3,5} is a twin prime pair.
a(2) = 34 = 2 * 17 that is semiprime. Also, 5 * 7 - 1 = 34 where {5,7} is a twin prime pair.
		

Crossrefs

Programs

  • Magma
    IsP2:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ s: n in [1..1000] | IsPrime(n) and IsPrime(n+2) and IsP2(s) where s is (n * (n+2) - 1)];
  • Maple
    A269663:= proc() local a, b, d; a:= ithprime(n); b:=a+2; d:=(a*b)-1; if isprime(b)and bigomega(d)=2 then return (d): fi; end: seq(A269663 (n), n=1..1000);
  • Mathematica
    A269663= {}; Do[a = Prime[n]; b = a + 2; c = a*b - 1; If[PrimeQ[b] && PrimeOmega[c] == 2, AppendTo[A269663, c]], {n, 1000}]; A269663
    Select[Times @@ # - 1 & /@ Transpose@{#, 2 + #} &@ Select[Prime@ Range@ 900, NextPrime@ # == # + 2 &], PrimeOmega@ # == 2 &] (* Michael De Vlieger, Apr 01 2016 *)
    Select[Times@@@Select[Partition[Prime[Range[1000]],2,1],#[[2]]-#[[1]]==2&]-1,PrimeOmega[ #]==2&] (* Harvey P. Dale, Mar 14 2023 *)
  • PARI
    for(n = 1, 1000, p = prime(n); q = p + 2; c=(p*q) - 1; if(isprime(q) && bigomega(c)==2, print1(c, ", ")));
    

Formula

a(n) = 2*A086870(n). - Ray Chandler, Apr 04 2016