cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A346909 Continued fraction expansion of the constant whose decimal expansion is A269707.

Original entry on oeis.org

3, 3, 3, 30, 330, 303000, 33003300000, 3030000030300000000000, 3300330000000000330033000000000000000000000, 30300000303000000000000000000000303000003030000000000000000000000000000000000000000000
Offset: 1

Views

Author

Amiram Eldar, Aug 06 2021

Keywords

Comments

The next term has 171 digits and is too large to include in the Data section.

Examples

			3 + 1/(3 + 1/(3 + 1/(30 + 1/(330 + ... )))) = 3.30033000000000033... (A269707).
		

References

  • André Blanchard and Michel Mendès France, Symétrie et transcendance, Bull. Sc. Math., 2nd series, Vol. 106 (1982), pp. 325-335.

Crossrefs

Cf. A269707.

Programs

  • Mathematica
    a[1] = a[2] = 3; a[n_] := 3 * If[OddQ[n], 10^((4^((n - 3)/2) - 1)/3) * Product[1 + 10^(4^k), {k, 0, (n - 5)/2}], 10^((2*4^(n/2 - 2) + 1)/3) * Product[1 + 10^(2*4^k), {k, 0, n/2 - 3}]]; Array[a, 10]

Formula

a(n) = 3 * 10^((4^((n-3)/2)-1)/3) * Product_{k=0..(n-5)/2} (1 + 10^(4^k)), if n > 2 is odd, and 3 * 10^((2*4^(n/2-2)+1)/3) * Product_{k=0..n/2-3} (1 + 10^(2*4^k)), if n > 2 is even.

A151666 Number of partitions of n into distinct powers of 4.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

Programs

  • Haskell
    a151666 n = fromEnum (n < 2 || m < 2 && a151666 n' == 1)
       where (n', m) = divMod n 4
    -- Reinhard Zumkeller, Dec 03 2011
  • Mathematica
    terms = 105;
    kmax = Log[4, terms] // Ceiling;
    CoefficientList[Product[1+x^(4^k), {k, 0, kmax}] + O[x]^(kmax terms), x][[1 ;; terms]] (* Jean-François Alcover, Jul 31 2018 *)

Formula

G.f.: Prod_{k >= 0 } (1+x^(4^k)). Exponents give A000695.
G.f. A(x) satisfies: A(x) = (1 + x) * A(x^4). - Ilya Gutkovskiy, Aug 12 2019

A269709 Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 6, 14, 34, 54, 86, 126, 202, 270, 350, 438, 562, 686, 846, 1030, 1322, 1582, 1854, 2134, 2450, 2766, 3118, 3494, 3978, 4438, 4934, 5454, 6082, 6710, 7446, 8254, 9386, 10414, 11454, 12502, 13586, 14670, 15790, 16934, 18186, 19414, 20678, 21966, 23362
Offset: 0

Views

Author

Robert Price, Mar 04 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
Rules 46, 142 and 174 also generate this sequence.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A269707.

Programs

  • Mathematica
    rule=14; stages=300;
    ca=CellularAutomaton[{rule,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},stages]; (* Start with single black cell *)
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)

A269708 Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 5, 20, 76, 292, 1132, 4420, 17356, 68452, 270892, 1074820, 4273036, 17013412, 67817452, 270561220, 1080119116
Offset: 0

Views

Author

Robert Price, Mar 04 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
Rules 46, 142 and 174 also generate this sequence.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A269707.

Programs

  • Mathematica
    rule=14; stages=300;
    ca=CellularAutomaton[{rule,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},stages]; (* Start with single black cell *)
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)

Formula

Conjectures from Colin Barker, Mar 08 2016: (Start)
a(n) = 4*3^(n-2)+4^n for n>1.
a(n) = 7*a(n-1)-12*a(n-2) for n>3.
G.f.: (1-2*x-3*x^2-4*x^3) / ((1-3*x)*(1-4*x)).
(End)

Extensions

a(9)-a(15) from Lars Blomberg, Apr 12 2016
Showing 1-4 of 4 results.