cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A269984 Numbers k having factorial fractility A269982(k) = 2.

Original entry on oeis.org

4, 5, 8, 9, 12, 14, 16, 18, 22, 23, 24, 26, 27, 32, 33, 37, 38, 39, 48, 49, 53, 54, 57, 58, 61, 64, 66, 78, 81, 83, 86, 87, 96, 97, 101, 107, 113, 114, 121, 129, 131, 139, 163, 169, 174, 178, 181, 193, 218, 227, 241, 257, 263, 267, 277, 302, 317, 327, 331
Offset: 1

Views

Author

Keywords

Comments

See A269982 for a definition of factorial fractility and a guide to related sequences.

Examples

			NI(1/5) = (2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...)
NI(2/5) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...)
NI(3/5) = (1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, ...)
NI(4/5) = (1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, ...)
so there are 2 equivalences classes for n = 5, and the fractility of 5 is 2.
		

Crossrefs

Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269985, A269986, A269987, A269988 (numbers with factorial fractility 1, 3, ..., 6, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).

Programs

  • Mathematica
    A269982[n_] := CountDistinct[With[{l = NestWhileList[
             Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
                FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
          Min@l[[First@First@Position[l, Last@l] ;;]]] & /@
        Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
    Select[Range[2, 500], A269982[#] == 2 &] (* Robert Price, Sep 19 2019 *)
  • PARI
    select( is_A269984(n)=A269982(n)==2, [1..300]) \\ M. F. Hasler, Nov 05 2018

Extensions

Edited by M. F. Hasler, Nov 05 2018

A269985 Numbers k having factorial fractility A269982(k) = 3.

Original entry on oeis.org

10, 15, 17, 21, 25, 30, 36, 41, 42, 44, 52, 55, 62, 72, 74, 76, 88, 93, 98, 99, 103, 104, 106, 108, 111, 118, 122, 125, 128, 132, 134, 137, 146, 149, 155, 158, 162, 166, 173, 176, 177, 179, 183, 186, 192, 198, 201, 202, 203, 214, 219, 226, 228, 237, 242, 249
Offset: 1

Views

Author

Keywords

Comments

See A269982 for a definition of factorial fractility and a guide to related sequences.

Examples

			NI(1/10) = (3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, ...),
NI(2/10) = (2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, ...) ~ NI(1/10),
NI(3/10) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(4/10) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...) ~ NI(3/10),
NI(5/10) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(6/10) = (1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, ...) ~ NI(1/10),
NI(7/10) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...) ~ NI(3/10),
NI(8/10) = (1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...) ~ NI(1/10),
NI(9/10) = (1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, ...) ~ NI(1/10),
so that there are 3 equivalence classes for n = 10, so the factorial fractility of 10 is 3.
		

Crossrefs

Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269986, A269987, A269988 (numbers with factorial fractility 1, 2, ..., 6, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).

Programs

  • Mathematica
    A269982[n_] := CountDistinct[With[{l = NestWhileList[
            Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
               FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
         Min@l[[First@First@Position[l, Last@l] ;;]]] & /@
       Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
    Select[Range[2, 500], A269982[#] == 3 &] (* Robert Price, Sep 19 2019 *)
  • PARI
    select( is_A269985(n)=A269982(n)==2, [1..200]) \\ M. F. Hasler, Nov 05 2018

Extensions

Edited by M. F. Hasler, Nov 05 2018

A269986 Numbers k having factorial fractility A269982(k) = 4.

Original entry on oeis.org

20, 28, 34, 35, 40, 45, 46, 47, 50, 51, 56, 60, 63, 65, 69, 75, 77, 80, 82, 84, 90, 91, 102, 110, 112, 116, 117, 120, 123, 124, 133, 135, 144, 147, 148, 150, 152, 156, 159, 160, 165, 167, 171, 172, 194, 206, 208, 209, 216, 217, 222, 223, 234, 236, 239, 240
Offset: 1

Views

Author

Keywords

Comments

See A269982 for a definition of factorial fractility and a guide to related sequences.

Examples

			NI(1/20) = (3, 3, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...)
NI(5/20) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...)
NI(6/20) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...)
NI(10/20) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...).
These 4 equivalence classes represent all the classes for n = 20, so the factorial fractility of 20 is 4.
		

Crossrefs

Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269985, A269987, A269988 (numbers with factorial fractility 1, 2, ..., 6, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).

Programs

  • Mathematica
    A269982[n_] := CountDistinct[With[{l = NestWhileList[
            Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
               FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
         Min@l[[First@First@Position[l, Last@l] ;;]]] & /@
       Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
    Select[Range[2, 500], A269982[#] == 4 &] (* Robert Price, Sep 19 2019 *)
  • PARI
    select( is_A269986(n)=A269982(n)==4, [1..200]) \\ M. F. Hasler, Nov 05 2018

Extensions

Edited by M. F. Hasler, Nov 05 2018

A269987 Numbers k having factorial fractility A269982(k) = 5.

Original entry on oeis.org

68, 70, 71, 85, 92, 100, 126, 127, 130, 136, 138, 145, 154, 157, 161, 164, 168, 180, 185, 195, 200, 204, 220, 224, 232, 247, 253, 266, 272, 288, 291, 300, 304, 310, 318, 324, 328, 333, 334, 336, 341, 342, 348, 360, 365, 369, 371, 390, 395, 400, 404, 407, 408, 412, 418, 433, 440, 441, 443, 444, 447
Offset: 1

Views

Author

Keywords

Comments

See A269982 for a definition of factorial fractility and a guide to related sequences.

Examples

			NI(1/68) = (4, 2, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, ...)
NI(4/68) = (3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, ...)
NI(6/68) = (3, 2, 1, 2, 2, 3, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 1, 2, 3, ...)
NI(17/68) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...)
NI(34/68) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...).
These 5 equivalence classes represent all the classes for n = 68, so the factorial fractility of 68 is 5.
		

Crossrefs

Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269985, A269986, A269988 (numbers with factorial fractility 1, 2, ..., 6, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).

Programs

  • Mathematica
    A269982[n_] := CountDistinct[With[{l = NestWhileList[
            Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
               FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
         Min@l[[First@First@Position[l, Last@l] ;;]]] & /@
       Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
    Select[Range[2, 500], A269982[#] == 5 &] (* Robert Price, Sep 19 2019 *)
  • PARI
    select( is_A269987(n)=A269982(n)==5, [1..400]) \\ M. F. Hasler, Nov 05 2018

Extensions

Edited and more terms added by M. F. Hasler, Nov 05 2018

A269988 Numbers k having factorial fractility A269982(k) = 6.

Original entry on oeis.org

94, 105, 115, 141, 142, 153, 170, 175, 182, 184, 187, 189, 196, 205, 207, 210, 212, 213, 215, 221, 225, 235, 245, 252, 254, 255, 260, 265, 275, 276, 282, 290, 299, 306, 314, 325, 367, 368, 370, 378, 381, 388, 392, 399, 414, 424, 425, 426, 434, 435, 446, 450
Offset: 1

Views

Author

Keywords

Comments

See A269982 for a definition of factorial fractility and a guide to related sequences.

Examples

			NI(1/94) = (4, 3, 2, 3, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 3, 1, 4, 1, 1, 2, ...),
NI(2/94) = (4, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, ...),
NI(4/94) = (3, 5, 1, 1, 2, 2, 1, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, ...),
NI(7/94) = (3, 2, 2, 2, 1, 2, 4, 3, 2, 3, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, ...),
NI(11/94) = (3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, ...),
NI(47/94) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...):
These 6 equivalence classes represent all the classes for k = 94, so the factorial fractility of 94 is 6.
		

Crossrefs

Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269985, A269986, A269987 (numbers with factorial fractility 1, 2, ..., 5, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).

Programs

  • Mathematica
    A269982[n_] := CountDistinct[With[{l = NestWhileList[
             Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
                FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
          Min@l[[First@First@Position[l, Last@l] ;;]]] & /@
        Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
    Select[Range[2, 500], A269982[#] == 6 &] (* Robert Price, Sep 19 2019 *)
  • PARI
    select( is_A269988(n)=A269982(n)==6, [1..400]) \\ M. F. Hasler, Nov 05 2018

Extensions

Edited and more terms added by M. F. Hasler, Nov 05 2018

A269983 Numbers k having factorial fractility A269982(k) = 1.

Original entry on oeis.org

2, 3, 6, 7, 11, 13, 19, 29, 31, 43, 59, 67, 73, 79, 89, 109, 151, 197, 199, 211, 229, 233, 269, 281, 283, 293, 337, 373, 379, 389, 397, 419, 421, 439, 449, 463, 487, 503, 509, 547, 557, 619, 673, 701, 727, 733, 797, 809, 811, 827, 877, 883, 887, 937, 941, 947, 953, 983
Offset: 1

Views

Author

Keywords

Comments

See A269982 for a definition of factorial fractility and a guide to related sequences.
Is 6 the largest even term of this sequence? - M. F. Hasler, Nov 05 2018

Examples

			NI(1/7) = (3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, ...),
NI(2/7) = (2, 2, 1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, ...),
NI(3/7) = (2, 1, 1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, ...),
NI(4/7) = (1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, 1, 2, ...),
NI(5/7) = (1, 2, 1, 1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, ...),
NI(6/7) = (1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, ...):
all are eventually periodic with period (1, 1, 2, 2, 3), so there is only one equivalence class for n = 7, and the fractility of 7 is 1.
		

Crossrefs

Cf. A269982 (factorial fractility of n); A269984, A269985, A269986, A269987, A269988 (numbers with factorial fractility 2, ..., 6, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).

Programs

  • Mathematica
    A269982[n_] := CountDistinct[With[{l = NestWhileList[
             Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
                FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
          Min@l[[First@First@Position[l, Last@l] ;;]]] & /@
        Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
    Select[Range[2, 1000], A269982[#] == 1 &] (* Robert Price, Sep 19 2019 *)
  • PARI
    select( is_A269983(n)=A269982(n)==1, [1..300]) \\ M. F. Hasler, Nov 05 2018

Extensions

Edited and more terms added by M. F. Hasler, Nov 05 2018
a(54)-a(58) from Robert Price, Sep 19 2019

A270000 Harmonic fractility of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 2, 3, 3, 2, 4, 1, 2, 3, 2, 3, 3, 1, 1, 3, 1, 3, 3, 1, 5, 1, 3, 3, 2, 2, 2, 1, 1, 1, 5, 3, 3, 1, 3, 3, 4, 1, 2, 2, 3, 3, 6, 3, 3, 2, 1, 4, 3, 1, 2, 2, 3, 3
Offset: 2

Views

Author

Keywords

Comments

In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) + L(1)*r(n+1) < x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2))-r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility.
For harmonic fractility, r(n) = 1/n, n(j+1) = floor(L(j)/(x - Sum_{i=1..j} L(i-1)/(n(i)+1))) for all j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018

Examples

			NI(1/11) = (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(2/11) = (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(3/11) = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(4/11) = (2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...),
NI(5/11) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...),
NI(6/11) = (1, 11, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(7/11) = (1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(8/11) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(9/11) = (1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(10/11) = (1, 1, 1, 3, 3, 3, 3, 3, 3, 3, ...),
so that there are 3 equivalence classes for n = 11, and that the harmonic fractility of 11 is 3.
		

Crossrefs

Guide to related sequences:
k - numbers with harmonic fractility k:
1 - A269804
2 - A269805
3 - A269806
4 - A269807
5 - A269808
6 - A269809
Cf. A269570 (binary fractility), A269982 (factorial fractility).

Programs

  • Mathematica
    A270000[n_] := CountDistinct[With[{l = NestWhileList[Rescale[#, {1/(Floor[1/#] + 1), 1/Floor[1/#]}] &, #, UnsameQ, All]}, Min@l[[First@FirstPosition[l, Last@l] ;;]]] & /@ Range[1/n, 1 - 1/n, 1/n]] (* Davin Park, Nov 09 2016 *)
  • PARI
    A270000(n)=#Set(vector(n-1,k,NIR(k/n))) \\ where:
    NIR(x, n, L=1, S=[], c=0)={for(i=2, oo, n=L\x; S=setunion(S, [x/L]); x-=L/(n+1); L/=n*(n+1); setsearch(S, x/L)&& if(c, break, c=!S=[])); S[1]} \\ variant of the function NI() below; returns just a unique representative (smallest x/L occurring within the period) of the equivalence class.
    NI(x, n=[], L=1, S=[], c=0)={for(i=2, oo, n=concat(n, L\x); c|| S=setunion(S, [x/L]); x-=L/(n[#n]+1); L/=n[#n]*(n[#n]+1); if(!c, setsearch(S, x/L)&& [c,S]=[i,x/L], x/L==S, c-=i; break)); [n[1..2*c-1], n[c..-1]]} \\ Returns the harmonic nested interval sequence for x in the form [transition, period]. (End)

Extensions

Definition corrected by Jack W Grahl, Jun 27 2018
Edited by M. F. Hasler, Nov 05 2018

A269989 Odds fractility of n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 3, 3, 6, 6, 5, 6, 7, 6, 8, 7, 5, 8, 8, 8, 10, 10, 10, 10, 11, 5, 13, 11, 9, 15, 13, 11, 14, 15, 10, 16, 15, 11, 15, 18, 14, 18, 18, 10, 23, 17, 14, 18, 15, 16, 25, 20, 10, 20, 24, 15, 25, 23, 16, 27, 27, 14, 23, 24, 21, 26, 27, 25, 26, 29
Offset: 2

Views

Author

Keywords

Comments

In order to define (odds) fractility of an integer n > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) , x <= r(n), and let L(1) = r(n(1))-r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) < x <= r(n(1)+1) + L(1)r(n), and let L(2) = (r(n(2))-r(r(n)+1))L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ... ), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For n > 1, the r-fractility of n is the number of equivalence classes of sequences NI(m/n) for 0 < m < n. Taking r = (1/1, 1/3, 1/5, 1/7, 1/9, ... ) gives odds fractilily.
binary fractility: A269570
factorial fractility: A269982
harmonic fractility: A270000
primes fractility: A269990

Examples

			NI(1/7) = (4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...)
NI(2/7) = (2,1,1,3,1,1,1,1,1,1,2,1,1,2,2,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,2,1,1,1,19,1,30,1,2,2,1,10,1,1,3,1,...)
NI(3/7) = (1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...)
NI(4/7) = (1,1,14,1,2,3,1,2,1,1,1,1,1,2,1,3,2,1,6,1,1,11,1,1,1,1,1,1,1,12,2,1,1,1,2,3,1,1,1,1,1,6,1,1,1,1,2,3,1,7,...)
NI(5/7) = (1,1,1,14,1,2,3,1,2,1,1,1,1,1,2,1,3,2,1,6,1,1,11,1,1,1,1,1,1,1,12,2,1,1,1,2,3,1,1,1,1,1,6,1,1,1,1,2,3,1,...)
NI(6/7) = (1,1,1,1,2,1,1,11,1,2,1,1,1,1,1,1,1,6,1,7,1,1,1,1,1,1,1,2,1,1,6,1,1,1,194,1,2,7,6,2,1,1,1,1,1,1,3,1,2,1,...);
there are 4 equivalence classes:  {1/7,3/7},{2/7},{4,5},{6},so that a(7) = 4.
		

Crossrefs

A269990 Primes fractility of n.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 9, 6, 10, 10, 10, 12, 12, 11, 12, 15, 7, 14, 15, 12, 17, 16, 13, 17, 15, 13, 18, 18, 16, 18, 23, 16, 20, 21, 14, 22, 23, 19, 23, 22, 20, 27, 26, 16, 24, 26, 21, 28, 27, 20, 29, 32, 18, 30, 33, 27, 35, 33, 27, 29
Offset: 2

Views

Author

Keywords

Comments

In order to define (primes) fractility of an integer n > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1), x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) < x <= r(n(1)+1) + L(1)r(n), and let L(2) = (r(n(2)) - r(r(n)+1))L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For n > 1, the r-fractility of n is the number of equivalence classes of sequences NI(m/n) for 0 < m < n. Taking r = (1/2, 1/3, 1/5, 1/7, 1/11, ... ) gives primes fractility.
binary fractility: A269570
factorial fractility: A269982
harmonic fractility: A270000
odds fractility: A269989

Examples

			NI(1/11) = (5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...)
NI(2/11) = (3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...)
NI(3/11) = (2,1,2,1,1,1,1,1,4,1,1,1,1,1,3,2,9,1,1,1,2,1,2,2,2,2,1,1,1,4,1,1,1,1,1,1,1,1,1,1,11,1,2,4,1,4,3,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,...)
NI(4/11) = (1,8,2,4,1,2,1,1,1,1,1,2,1,3,2,1,5,1,1,8,1,4,1,1,1,1,1,1,1,2,3,3,1,3,1,1,1,1,1,5,2,3,2,4,2,1,8,2,1,1,2,2,106,2,3,1,1,1,1,1,1,2,2,6,1,,...)
NI(5/11) = (1,3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...)
NI(6/11) = (1,2,1,1,1,1,1,4,1,1,1,1,1,3,2,9,1,1,1,2,1,2,2,2,2,1,1,1,4,1,1,1,1,1,1,1,1,1,1,11,1,2,4,1,4,3,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,1,...);
NI(7/11) = (1,1,3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...);
NI(8/11) = (1,1,1,5,3,1,1,1,2,1,3,1,1,1,1,1,2,1,11,1,1,1,1,1,1,1,1,2,1,1,1,2,1,8,1,1,2,3,1,1,1,6,1,2,1,4,1,1,1,1,1,1,34,1,8,1,3,1,1,5,1,1,1,1,1,4,1,...);
NI(9/11) = (1,1,1,1,5,3,1,1,1,2,1,3,1,1,1,1,1,2,1,11,1,1,1,1,1,1,1,1,2,1,1,1,2,1,8,1,1,2,3,1,1,1,6,1,2,1,4,1,1,1,1,1,1,34,1,8,1,3,1,1,5,1,1,1,1,1,4,...);
NI(10/11) = (1,1,1,1,1,2,1,1,1,1,4,3,1,1,1,1,1,1,2,1,1,1,1,6,1,1,1,1,3,2,1,1,1,1,5,7,1,3,2,1,3,1,1,1,1,1,1,1,1,3,1,1,2,2,4,2,1,1,1,1,1,1,1,1,1,1,1,6,...);  there are 6 equivalence classes: {1/11}, {2/11,5/11,7/11},{3,11,6/11},{4/11},{8/11,9/11},{10/11}, so that a(11) = 6.
		

Crossrefs

Showing 1-9 of 9 results.