A270205 Number of 2 X 2 planar subsets in an n X n X n cube.
0, 0, 6, 36, 108, 240, 450, 756, 1176, 1728, 2430, 3300, 4356, 5616, 7098, 8820, 10800, 13056, 15606, 18468, 21660, 25200, 29106, 33396, 38088, 43200, 48750, 54756, 61236, 68208, 75690, 83700, 92256
Offset: 0
Examples
The 2 X 2 X 2 cube labeled with the integers 1 to 8 has the following six 2 X 2 planar subsets each containing 4 cells: 1,2,3,4; 5,6,7,8; 1,2,5,6; 3,4,7,8; 1,4,5,8; 2,3,6,7.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Craig Knecht, Cube assembly from different 2x2 planar criteria.
- Craig Knecht, F1 code most-perfect magic cube 960 examples.
- Craig Knecht, F1 code reversible cube 960 examples.
- Craig Knecht, magic space.
- Craig Knecht, Most-perfect space.
- Walter Trump, Most-Perfect magic cube.
- Walter Trump, 6 unique neighbors for the most-perfect magic cube.
- Wikipedia, Most-perfect magic square translated to a cube via the Hilbert space filling curve.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[3*n^3 - 6*n^2 + 3*n: n in [0..50]]; // Wesley Ivan Hurt, Mar 13 2016
-
Maple
A270205:=n->3*n^3-6*n^2+3*n: seq(A270205(n), n=0..50); # Wesley Ivan Hurt, Mar 13 2016
-
Mathematica
Table[3*n^3 - 6*n^2 + 3*n, {n, 0, 50}] (* Wesley Ivan Hurt, Mar 13 2016 *) CoefficientList[Series[(6 (x^2 + 2 x^3))/(-1 + x)^4, {x, 0, 32}], x] (* Michael De Vlieger, Mar 15 2016 *)
-
PARI
concat([0, 0], Vec(6*x^2*(1+2*x)/(x-1)^4 + O(x^100))) \\ Altug Alkan, Mar 14 2016
-
PARI
a(n) = 3*n^3 - 6*n^2 + 3*n \\ Charles R Greathouse IV, Mar 15 2016
Formula
a(n) = 3*n^3 - 6*n^2 + 3*n.
From Wesley Ivan Hurt, Mar 13 2016: (Start)
G.f.: 6*x^2*(1+2*x)/(x-1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
E.g.f.: 3*x^2*(1+x)*exp(x). - G. C. Greubel, May 10 2016
a(n) = 6 * A002411(n-1) for n>=1. - Joerg Arndt, May 11 2016
a(n) = A118659((n-1)^3), n>1. - Mohammed Yaseen, Aug 22 2021
From Amiram Eldar, Jul 02 2023: (Start)
Sum_{n>=2} 1/a(n) = Pi^2/18 - 1/3.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/36 - 2*log(2)/3 + 1/3. (End)
Comments