A073229 Decimal expansion of e^(1/e).
1, 4, 4, 4, 6, 6, 7, 8, 6, 1, 0, 0, 9, 7, 6, 6, 1, 3, 3, 6, 5, 8, 3, 3, 9, 1, 0, 8, 5, 9, 6, 4, 3, 0, 2, 2, 3, 0, 5, 8, 5, 9, 5, 4, 5, 3, 2, 4, 2, 2, 5, 3, 1, 6, 5, 8, 2, 0, 5, 2, 2, 6, 6, 4, 3, 0, 3, 8, 5, 4, 9, 3, 7, 7, 1, 8, 6, 1, 4, 5, 0, 5, 5, 7, 3, 5, 8, 2, 9, 2, 3, 0, 4, 7, 0, 9, 8, 8, 5, 1, 1, 4, 2, 9, 5
Offset: 1
Examples
1.44466786100976613365833910859...
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 35.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Ovidiu Furdui, Problem 11982, The American Mathematical Monthly, Vol. 124, No. 5 (2017), p. 465; A Limit of a Power of a Sum, Solution to Problem 11982 by Roberto Tauraso, ibid., Vol. 126, No. 2 (2019), p. 187.
- Simon Plouffe, exp(1/e).
- Jonathan Sondow and Diego Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae, Vol. 37 (2010), pp. 151-164; see Definition 4.1 on p. 158.
- Jacob Steiner, Über das größte Product der Theile oder Summanden jeder Zahl, Crelle, Vol. 40 (1850), pp. 208; alternative link.
- Eric Weisstein's World of Mathematics, Steiner's Problem.
Crossrefs
Programs
-
Maple
evalf[110](exp(exp(-1))); # Muniru A Asiru, Dec 29 2018
-
Mathematica
RealDigits[ E^(1/E), 10, 110] [[1]]
-
PARI
exp(1)^exp(-1)
Formula
Equals 1 + Integral_{x = 1/e..1} (1 + log(x))/x^x dx = 1 - Integral_{x = 0..1/e} (1 + log(x))/x^x dx. - Peter Bala, Oct 30 2019
Equals Sum_{k>=0} exp(-k)/k!. - Amiram Eldar, Aug 13 2020
Equals lim_{x->oo} (Sum_{n>=1} (x/n)^n)^(1/x) (Furdui, 2017). - Amiram Eldar, Mar 26 2022
Comments