cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270882 Triangle read by rows: D*(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2) with a block containing any given nonzero vector.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 16, 12, 0, 1, 176, 560, 224, 0, 1, 3456, 40000, 53760, 13440, 0, 1, 128000, 5848832, 20951040, 15554560, 2666496, 0, 1, 9115648, 1934195712, 17826414592, 30398054400, 14335082496, 1791885312, 0, 1, 1259921408, 1510821195776, 37083513880576, 134908940386304, 133854174117888, 43693331447808, 4161269661696
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,      2;
  0, 1,     16,      12;
  0, 1,    176,     560,      224;
  0, 1,   3456,   40000,    53760,    13440;
  0, 1, 128000, 5848832, 20951040, 15554560, 2666496;
  ...
		

Crossrefs

Cf. A270880, A270883 (row sums).
The main diagonal appears to match A377642. - Nikita Babich, Nov 17 2024

Programs

  • Mathematica
    (* about 40 seconds on a laptop computer *) g[n_] := q^Binomial[n, 2] * FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2; d[k_, m_] :=Map[PadRight[#, 10] &,Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {j}]]], {j, 1, n}], {n, 1, 10}]][[k, m]];d[0, m_] := If[m == 0, 1, 0]; d[k_, 0] := If[k == 0, 1, 0];s[n_, m_] :=Sum[FunctionExpand[QBinomial[n - 1, k, 2]]*2^(k (n - k))*d[k, m - 1], {k, 0, n - 1}]; Table[Table[s[n, m], {m, 1, n}], {n, 1,7}] (* Geoffrey Critzer, May 20 2017 *)

Formula

Recurrence: a(n) = Sum_{k=0..n-1} q-binomial(n-1,k)*q^(n*(n-k))*D_q(k,m-1) where D_q(k,m-1) is given by A270880 for q = 2 and where the q-binomial for q = 2 is given by A022166. This formula is the q-analog of summation formula for the Stirling numbers of the second kind A008277 so when q = 1, it reduces to that formula. - David P. Ellerman, Mar 26 2016

Extensions

Name extended by David P. Ellerman, Mar 26 2016
Row 8 from Geoffrey Critzer, May 20 2017