cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A270883 Row sums of triangle A270882. Number of direct-sum decompositions of an n-dimensional vector space over GF(2) with any given nonzero vector in a block.

Original entry on oeis.org

1, 1, 3, 29, 961, 110657, 45148929, 66294748161, 355213310611457, 7025248750804353025, 517789725632146766102529, 143350189472963401121415823361, 150053549525040193876302690826321921, 597137918840965720442548744290289324130305, 9075744511279922489436849557317778793074029232129
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Crossrefs

Formula

Recurrence: a(n) = Sum_{k=0,...,n-1} q-binomial(n-1,k)*q^(n*(n-k))*D_q(k) where D_q(k) is given by A270881 for q = 2 and where the q-binomial for q = 2 is given by A022166. This summation formula is the q-analog of the summation formula for the Bell numbers A000110 when q = 1. - David P. Ellerman, Mar 26 2016

Extensions

Name edited by David P. Ellerman, Mar 26 2016
a(8)-a(14) from Geoffrey Critzer, May 21 2017

A270880 Triangle read by rows: T(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 28, 28, 0, 1, 400, 1680, 840, 0, 1, 10416, 168640, 277760, 83328, 0, 1, 525792, 36053248, 159989760, 139991040, 27998208, 0, 1, 51116992, 17811244032, 209056841728, 419919790080, 227569434624, 32509919232
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Examples

			Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 28, 28;
0, 1, 400, 1680, 840;
0, 1, 10416, 168640, 277760, 83328;
...
		

Crossrefs

Cf. A053601 (right diagonal), A270881 (row sums), A270882.

Programs

  • Mathematica
    g[n_] := q^Binomial[n, 2] *FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2;Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, May 18 2017 *)

Formula

T(n,m) = Sum_ g(n)/(g(n_1)*g(n_2)***g(n_m))/(a_1!*a_2!***a_n!) where the sum is over all partitions of n into m parts and a_1,a_2,...,a_n is the part count signature of the partition and g(n) = A002884(n). - Geoffrey Critzer, May 18 2017 (after formula given in first Ellerman link above).

A377642 a(n) = (1/(n-1)!) * Product_{i=1..n-1} (2^n-2^i).

Original entry on oeis.org

1, 2, 12, 224, 13440, 2666496, 1791885312, 4161269661696, 33955960439439360, 987107315743488737280, 103404624282172311371513856, 39408968779516596852827017445376, 55084280201257118417007491904448757760, 284322478318511376197290687371005495020093440
Offset: 1

Views

Author

Nikita Babich, Nov 05 2024

Keywords

Crossrefs

Appears to be main diagonal of A270882.

Programs

  • Mathematica
    Table[Product[2^n - 2^i, {i, 1, n - 1}]/Factorial[n - 1], {n, 1, 20}]
  • PARI
    a(n)=prod(i=1, n-1, 2^n-2^i)/(n-1)! \\ Andrew Howroyd, Nov 10 2024

Formula

a(n) = (Product_{i=1..n-1}(2^n-2^i))/((n-1)!).
a(n) = A028365(n-1)/A000142(n-1).
a(n) = A000079(n-1) * A053601(n-1).
a(n) ~ A048651 * 2^(n*(n-1)) / (n-1)!. - Vaclav Kotesovec, Nov 13 2024
Showing 1-3 of 3 results.