A270881
Row sums of triangle A270880. Number of direct-sum decompositions of a finite vector space of n dimensions over GF(2).
Original entry on oeis.org
1, 1, 4, 57, 2921, 540145, 364558049, 906918346689, 8394259686375297, 291375477821572448001, 38187935488350036891532801, 19005446750755761952317881973761, 36091267618694510017592440805677594625, 262587035725176662374187801686523815760228353, 7345273837043092730077580223639933697831592435638273
Offset: 0
- Edward A. Bender, and Jay R. Goldman, Enumerative Uses of Generating Functions, Indiana University Mathematics Journal 20 (8) (1971) 753-65.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv:1603.07619 [math.CO], 2016.
- David Ellerman, The Quantum Logic of Direct-Sum Decompositions, arXiv preprint arXiv:1604.01087 [quant-ph], 2016. See Section 7.5.
-
g[n_] := q^Binomial[n, 2] * FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2; Table[Total[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}]], {n, 1, 15}] (* Geoffrey Critzer, May 18 2017 *)
A270882
Triangle read by rows: D*(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2) with a block containing any given nonzero vector.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 16, 12, 0, 1, 176, 560, 224, 0, 1, 3456, 40000, 53760, 13440, 0, 1, 128000, 5848832, 20951040, 15554560, 2666496, 0, 1, 9115648, 1934195712, 17826414592, 30398054400, 14335082496, 1791885312, 0, 1, 1259921408, 1510821195776, 37083513880576, 134908940386304, 133854174117888, 43693331447808, 4161269661696
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 16, 12;
0, 1, 176, 560, 224;
0, 1, 3456, 40000, 53760, 13440;
0, 1, 128000, 5848832, 20951040, 15554560, 2666496;
...
-
(* about 40 seconds on a laptop computer *) g[n_] := q^Binomial[n, 2] * FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2; d[k_, m_] :=Map[PadRight[#, 10] &,Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {j}]]], {j, 1, n}], {n, 1, 10}]][[k, m]];d[0, m_] := If[m == 0, 1, 0]; d[k_, 0] := If[k == 0, 1, 0];s[n_, m_] :=Sum[FunctionExpand[QBinomial[n - 1, k, 2]]*2^(k (n - k))*d[k, m - 1], {k, 0, n - 1}]; Table[Table[s[n, m], {m, 1, n}], {n, 1,7}] (* Geoffrey Critzer, May 20 2017 *)
A358165
Irregular triangular array read by rows. T(n,k) is the number of direct sum decompositions V_1 + V_2 + ... + V_m = GF(2)^n with the dimensions of the V_i corresponding to the k-th partition of n in canonical ordering, n >= 0, 1 <= k <= A000041(n).
Original entry on oeis.org
1, 1, 1, 3, 1, 28, 28, 1, 120, 280, 1680, 840, 1, 496, 9920, 29760, 138880, 277760, 83328, 1, 2016, 166656, 499968, 357120, 19998720, 19998720, 15554560, 139991040, 139991040, 27998208, 1, 8128, 2731008, 8193024, 48377856, 1354579968, 1354579968, 2902671360, 13545799680, 81274798080, 40637399040, 126427463680, 379282391040, 227569434624, 32509919232
Offset: 0
Triangle begins:
1;
1;
1, 3;
1, 28, 28;
1, 120, 280, 1680, 840;
1, 496, 9920, 29760, 138880, 277760, 83328;
...
T(4,3) = 280. For n=4 the five partitions in canonical ordering are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}. The third partition in this order is {2,2}. So T(4,3) = A002884(4)/(A002884(2)^2*2!) = 280.
-
dsd2[n_, signature_] := Product[2^n - 2^i, {i, 0, n - 1}]/ Product[Product[2^k - 2^i, {i, 0, k - 1}]^signature[[k]]*signature[[k]]!, {k, 1, n}];Table[Map[dsd2[n, #] &,Map[Table[Count[#, i], {i, 1, n}] &, IntegerPartitions[n]]], {n, 0,6}] // Grid
A373536
Number of ways to form a direct sum decomposition of the vector space GF(2)^n and then choose a basis for each subspace in the decomposition.
Original entry on oeis.org
1, 1, 9, 364, 61320, 41747328, 113420740608, 1223445790457856, 52307167449899335680, 8861896666997422628536320, 5951934931285476447488997064704, 15857359709817958217841735837828513792, 167702614892018104786663957623269078052372480, 7044769706183185876455816992603242619680927682396160
Offset: 0
-
nn = 13; B[n_] := Product[q^n - q^i, {i, 0, n - 1}] /. q -> 2;
e[x_] := Sum[x^n/B[n], {n, 0, nn}]; f[x_] := Sum[x^n, {n, 0, nn}];
Table[B[n], {n, 0, nn}] CoefficientList[Series[Exp[f[x] - 1], {x, 0, nn}], x]
Showing 1-4 of 4 results.
Comments