cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A270880 Triangle read by rows: T(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 28, 28, 0, 1, 400, 1680, 840, 0, 1, 10416, 168640, 277760, 83328, 0, 1, 525792, 36053248, 159989760, 139991040, 27998208, 0, 1, 51116992, 17811244032, 209056841728, 419919790080, 227569434624, 32509919232
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Examples

			Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 28, 28;
0, 1, 400, 1680, 840;
0, 1, 10416, 168640, 277760, 83328;
...
		

Crossrefs

Cf. A053601 (right diagonal), A270881 (row sums), A270882.

Programs

  • Mathematica
    g[n_] := q^Binomial[n, 2] *FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2;Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, May 18 2017 *)

Formula

T(n,m) = Sum_ g(n)/(g(n_1)*g(n_2)***g(n_m))/(a_1!*a_2!***a_n!) where the sum is over all partitions of n into m parts and a_1,a_2,...,a_n is the part count signature of the partition and g(n) = A002884(n). - Geoffrey Critzer, May 18 2017 (after formula given in first Ellerman link above).

A270883 Row sums of triangle A270882. Number of direct-sum decompositions of an n-dimensional vector space over GF(2) with any given nonzero vector in a block.

Original entry on oeis.org

1, 1, 3, 29, 961, 110657, 45148929, 66294748161, 355213310611457, 7025248750804353025, 517789725632146766102529, 143350189472963401121415823361, 150053549525040193876302690826321921, 597137918840965720442548744290289324130305, 9075744511279922489436849557317778793074029232129
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Crossrefs

Formula

Recurrence: a(n) = Sum_{k=0,...,n-1} q-binomial(n-1,k)*q^(n*(n-k))*D_q(k) where D_q(k) is given by A270881 for q = 2 and where the q-binomial for q = 2 is given by A022166. This summation formula is the q-analog of the summation formula for the Bell numbers A000110 when q = 1. - David P. Ellerman, Mar 26 2016

Extensions

Name edited by David P. Ellerman, Mar 26 2016
a(8)-a(14) from Geoffrey Critzer, May 21 2017

A289543 Number of direct sum decompositions of GF(2)^n that do not contain any subspaces of dimension 1.

Original entry on oeis.org

1, 0, 1, 1, 281, 9921, 16078337, 13596908545, 191426147495937, 3273234077014474753, 497324772153177747947521, 154709087482207635347155451905, 291534668371237082293312814285062145, 1534814232386517133354150755522868689240065, 39269743760371912650589750432327799926355436503041, 3338607968166762847572429548161284663670177988768356630529
Offset: 0

Views

Author

Geoffrey Critzer, Jul 19 2017

Keywords

Comments

q-analog of A000296.

Crossrefs

Programs

  • Mathematica
    nn = 15; q := 2; g[n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]]; G[z_] :=Sum[z^k/g[k], {k, 1, nn}];Table[g[n], {n, 0, nn}] CoefficientList[
      Series[Exp[G[z] - z], {z, 0, nn}], z]

Formula

a(n)/A002884(n) is the coefficient of x^n in the expansion of exp(Sum_{k>1}x^k/A002884(k)).

A298561 Triangle read by rows. T(n,k) is the number of direct sum decompositions of GF(2)^n into subspaces of dimension at most k, 1<=k<=n.

Original entry on oeis.org

1, 3, 4, 28, 56, 57, 840, 2800, 2920, 2921, 83328, 499968, 539648, 540144, 540145, 27998208, 323534848, 363889408, 364556032, 364558048, 364558049, 32509919232, 765789208576, 904149876736, 906907414528, 906918338560, 906918346688, 906918346689
Offset: 1

Views

Author

Geoffrey Critzer, Jan 21 2018

Keywords

Examples

			  1
  3,     4,
  28,    56,     57,
  840,   2800,   2920,   2921,
  83328, 499968, 539648, 540144, 540145,
		

Crossrefs

Cf. A270881 (main diagonal), A053601 (column 1), A298339.

Programs

  • Mathematica
    nn = 7; \[Gamma][n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; Flatten[Table[Table[Transpose[
         Map[Drop[#, 1] &,Table[Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[Exp[Sum[z^i/\[Gamma][i], {i, 1, k}]], {z, 0, nn}],z], {k, 1, nn}]]][[j, k]], {k, 1, j}], {j, 1, nn}]]

Formula

exp(Sum_{j=0...k} x^j/A002884(j)) = Sum_{n>=0} T(n,k)/A002884(n)*x^n.

A303533 Number of ordered direct sum decompositions of the vector space GF(2)^n.

Original entry on oeis.org

1, 1, 7, 225, 31041, 17698273, 41014759873, 383214694567809, 14378402336340492033, 2162169920997910948019713, 1301828396408136687071569640449, 3136821919822089791220365613645953025, 30240714417270288646830264781681630189187073
Offset: 0

Views

Author

Geoffrey Critzer, Apr 25 2018

Keywords

Crossrefs

Cf. A270881.

Programs

  • Mathematica
    nn = 12; \[Gamma][n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; \[CapitalGamma][z_] :=
    Sum[z^k/\[Gamma][k], {k, 0, nn}];Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[1/(1 - (\[CapitalGamma][z] - 1)), {z, 0, nn}], z]

Formula

Sum_{n>=0}a(n)x^n/g(n) = 1/(2-(Sum_{n>=0}x^n/g(n))) where g(n) = A002884(n).
a(n) ~ c * d^n * 2^(n^2), where d = 1.149524744759658194895953141071829185374022882216951573931... and c = 0.2546517972696293457891304601766804587838159436304512... - Vaclav Kotesovec, May 06 2018

A287206 Triangle read by rows: T(n,k) is the number of direct sum decompositions of a finite vector space of n dimensions over GF(2) that have exactly k subspaces of dimension 1, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 1, 28, 0, 28, 281, 120, 1680, 0, 840, 9921, 139376, 29760, 277760, 0, 83328, 16078337, 20000736, 140491008, 19998720, 139991040, 0, 27998208, 13596908545, 130684723136, 81282991104, 380636971008, 40637399040, 227569434624, 0, 32509919232, 191426147495937, 443803094908800, 2132774681579520, 884358943211520, 3105997683425280, 265280940933120, 1237977724354560, 0, 132640470466560
Offset: 0

Views

Author

Geoffrey Critzer, May 21 2017

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     0,      1;
     1,      0,     3;
     1,     28,     0,     28,
   281,    120,  1680,      0,  840;
  9921, 139376, 29760, 277760,    0, 83328;
  ...
		

Crossrefs

Cf. A270881 (row sums), A053601 (main diagonal), A289543 (column k=0).

Programs

  • Mathematica
    nn = 8; g[n_] := QFactorial[n, q]*(q - 1)^n*q^Binomial[n, 2] /. q -> 2; e[u_] := Sum[u^r/g[r], {r, 0, nn}];
    Table[Table[(Table[g[n], {n, 0, nn}] CoefficientList[  Series[Exp[e[u] - 1 - u + u t], {u, 0, nn}], {u, t}])[[n,
         k]], {k, 1, n}], {n, 1, nn + 1}] // Grid

Formula

Sum_{n>=0} T(n,k)*u^n/g(n)*t^k = exp(Sum_{r>=0} u^r/g(r) - 1 - u + t*u) where g = A002884.

A298399 Triangle read by rows: T(n,k) is the number of direct sum decompositions of GF(2)^n whose maximal subspace has dimension k, 1<=k<=n, n>=1.

Original entry on oeis.org

1, 3, 1, 28, 28, 1, 840, 1960, 120, 1, 83328, 416640, 39680, 496, 1, 27998208, 295536640, 40354560, 666624, 2016, 1, 32509919232, 733279289344, 138360668160, 2757537792, 10924032, 8128, 1, 132640470466560, 6568159593103360, 1654847774392320, 38430207737856, 181463777280, 176865280, 32640, 1
Offset: 1

Views

Author

Geoffrey Critzer, Jan 18 2018

Keywords

Examples

			Triangle begins:
      1;
      3,      1;
     28,     28,     1;
    840,   1960,   120,   1;
  83328, 416640, 39680, 496,  1;
  ...
		

Crossrefs

Cf. A053601 (column 1), A270881 (row sums), A298561.

Programs

  • Mathematica
    nn = 7; \[Gamma][n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[ QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
      Drop[Transpose[Table[Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[Exp[Sum[z^i/\[Gamma][i], {i, 1, k + 1}]] -
    Exp[Sum[z^i/\[Gamma][i], {i, 1, k}]], {z, 0, nn}], z], {k, 0, 4}]], 1]]]

A358165 Irregular triangular array read by rows. T(n,k) is the number of direct sum decompositions V_1 + V_2 + ... + V_m = GF(2)^n with the dimensions of the V_i corresponding to the k-th partition of n in canonical ordering, n >= 0, 1 <= k <= A000041(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 28, 28, 1, 120, 280, 1680, 840, 1, 496, 9920, 29760, 138880, 277760, 83328, 1, 2016, 166656, 499968, 357120, 19998720, 19998720, 15554560, 139991040, 139991040, 27998208, 1, 8128, 2731008, 8193024, 48377856, 1354579968, 1354579968, 2902671360, 13545799680, 81274798080, 40637399040, 126427463680, 379282391040, 227569434624, 32509919232
Offset: 0

Views

Author

Geoffrey Critzer, Nov 01 2022

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,   3;
  1,  28,   28;
  1, 120,  280,  1680,    840;
  1, 496, 9920, 29760, 138880, 277760, 83328;
  ...
T(4,3) = 280.  For n=4 the five partitions in canonical ordering are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}.  The third partition in this order is {2,2}.  So T(4,3) = A002884(4)/(A002884(2)^2*2!) = 280.
		

Crossrefs

Cf. A270880, A270881 (row sums), A279038, A080575, A000041, A002884, A053601 (main diagonal).

Programs

  • Mathematica
    dsd2[n_, signature_] := Product[2^n - 2^i, {i, 0, n - 1}]/ Product[Product[2^k - 2^i, {i, 0, k - 1}]^signature[[k]]*signature[[k]]!, {k, 1, n}];Table[Map[dsd2[n, #] &,Map[Table[Count[#, i], {i, 1, n}] &, IntegerPartitions[n]]], {n, 0,6}] // Grid

Formula

For i = 1,...,n let a_i be the number of parts of size i in the k-th partition of n in canonical ordering. T(n,k) = A002884(n)/Product_{j=1..n} A002884(j)^a_j*a_j!.
Showing 1-8 of 8 results.