A270880
Triangle read by rows: T(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2).
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 28, 28, 0, 1, 400, 1680, 840, 0, 1, 10416, 168640, 277760, 83328, 0, 1, 525792, 36053248, 159989760, 139991040, 27998208, 0, 1, 51116992, 17811244032, 209056841728, 419919790080, 227569434624, 32509919232
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 28, 28;
0, 1, 400, 1680, 840;
0, 1, 10416, 168640, 277760, 83328;
...
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv:1603.07619 [math.CO], 2016.
- David Ellerman, The Quantum Logic of Direct-Sum Decompositions, arXiv preprint arXiv:1604.01087 [quant-ph], 2016. See Section 7.5.
-
g[n_] := q^Binomial[n, 2] *FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2;Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, May 18 2017 *)
A270883
Row sums of triangle A270882. Number of direct-sum decompositions of an n-dimensional vector space over GF(2) with any given nonzero vector in a block.
Original entry on oeis.org
1, 1, 3, 29, 961, 110657, 45148929, 66294748161, 355213310611457, 7025248750804353025, 517789725632146766102529, 143350189472963401121415823361, 150053549525040193876302690826321921, 597137918840965720442548744290289324130305, 9075744511279922489436849557317778793074029232129
Offset: 0
A289543
Number of direct sum decompositions of GF(2)^n that do not contain any subspaces of dimension 1.
Original entry on oeis.org
1, 0, 1, 1, 281, 9921, 16078337, 13596908545, 191426147495937, 3273234077014474753, 497324772153177747947521, 154709087482207635347155451905, 291534668371237082293312814285062145, 1534814232386517133354150755522868689240065, 39269743760371912650589750432327799926355436503041, 3338607968166762847572429548161284663670177988768356630529
Offset: 0
-
nn = 15; q := 2; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]]; G[z_] :=Sum[z^k/g[k], {k, 1, nn}];Table[g[n], {n, 0, nn}] CoefficientList[
Series[Exp[G[z] - z], {z, 0, nn}], z]
A298561
Triangle read by rows. T(n,k) is the number of direct sum decompositions of GF(2)^n into subspaces of dimension at most k, 1<=k<=n.
Original entry on oeis.org
1, 3, 4, 28, 56, 57, 840, 2800, 2920, 2921, 83328, 499968, 539648, 540144, 540145, 27998208, 323534848, 363889408, 364556032, 364558048, 364558049, 32509919232, 765789208576, 904149876736, 906907414528, 906918338560, 906918346688, 906918346689
Offset: 1
1
3, 4,
28, 56, 57,
840, 2800, 2920, 2921,
83328, 499968, 539648, 540144, 540145,
-
nn = 7; \[Gamma][n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; Flatten[Table[Table[Transpose[
Map[Drop[#, 1] &,Table[Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[Exp[Sum[z^i/\[Gamma][i], {i, 1, k}]], {z, 0, nn}],z], {k, 1, nn}]]][[j, k]], {k, 1, j}], {j, 1, nn}]]
A303533
Number of ordered direct sum decompositions of the vector space GF(2)^n.
Original entry on oeis.org
1, 1, 7, 225, 31041, 17698273, 41014759873, 383214694567809, 14378402336340492033, 2162169920997910948019713, 1301828396408136687071569640449, 3136821919822089791220365613645953025, 30240714417270288646830264781681630189187073
Offset: 0
-
nn = 12; \[Gamma][n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; \[CapitalGamma][z_] :=
Sum[z^k/\[Gamma][k], {k, 0, nn}];Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[1/(1 - (\[CapitalGamma][z] - 1)), {z, 0, nn}], z]
A287206
Triangle read by rows: T(n,k) is the number of direct sum decompositions of a finite vector space of n dimensions over GF(2) that have exactly k subspaces of dimension 1, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 0, 3, 1, 28, 0, 28, 281, 120, 1680, 0, 840, 9921, 139376, 29760, 277760, 0, 83328, 16078337, 20000736, 140491008, 19998720, 139991040, 0, 27998208, 13596908545, 130684723136, 81282991104, 380636971008, 40637399040, 227569434624, 0, 32509919232, 191426147495937, 443803094908800, 2132774681579520, 884358943211520, 3105997683425280, 265280940933120, 1237977724354560, 0, 132640470466560
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 0, 3;
1, 28, 0, 28,
281, 120, 1680, 0, 840;
9921, 139376, 29760, 277760, 0, 83328;
...
-
nn = 8; g[n_] := QFactorial[n, q]*(q - 1)^n*q^Binomial[n, 2] /. q -> 2; e[u_] := Sum[u^r/g[r], {r, 0, nn}];
Table[Table[(Table[g[n], {n, 0, nn}] CoefficientList[ Series[Exp[e[u] - 1 - u + u t], {u, 0, nn}], {u, t}])[[n,
k]], {k, 1, n}], {n, 1, nn + 1}] // Grid
A298399
Triangle read by rows: T(n,k) is the number of direct sum decompositions of GF(2)^n whose maximal subspace has dimension k, 1<=k<=n, n>=1.
Original entry on oeis.org
1, 3, 1, 28, 28, 1, 840, 1960, 120, 1, 83328, 416640, 39680, 496, 1, 27998208, 295536640, 40354560, 666624, 2016, 1, 32509919232, 733279289344, 138360668160, 2757537792, 10924032, 8128, 1, 132640470466560, 6568159593103360, 1654847774392320, 38430207737856, 181463777280, 176865280, 32640, 1
Offset: 1
Triangle begins:
1;
3, 1;
28, 28, 1;
840, 1960, 120, 1;
83328, 416640, 39680, 496, 1;
...
-
nn = 7; \[Gamma][n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[ QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
Drop[Transpose[Table[Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[Exp[Sum[z^i/\[Gamma][i], {i, 1, k + 1}]] -
Exp[Sum[z^i/\[Gamma][i], {i, 1, k}]], {z, 0, nn}], z], {k, 0, 4}]], 1]]]
A358165
Irregular triangular array read by rows. T(n,k) is the number of direct sum decompositions V_1 + V_2 + ... + V_m = GF(2)^n with the dimensions of the V_i corresponding to the k-th partition of n in canonical ordering, n >= 0, 1 <= k <= A000041(n).
Original entry on oeis.org
1, 1, 1, 3, 1, 28, 28, 1, 120, 280, 1680, 840, 1, 496, 9920, 29760, 138880, 277760, 83328, 1, 2016, 166656, 499968, 357120, 19998720, 19998720, 15554560, 139991040, 139991040, 27998208, 1, 8128, 2731008, 8193024, 48377856, 1354579968, 1354579968, 2902671360, 13545799680, 81274798080, 40637399040, 126427463680, 379282391040, 227569434624, 32509919232
Offset: 0
Triangle begins:
1;
1;
1, 3;
1, 28, 28;
1, 120, 280, 1680, 840;
1, 496, 9920, 29760, 138880, 277760, 83328;
...
T(4,3) = 280. For n=4 the five partitions in canonical ordering are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}. The third partition in this order is {2,2}. So T(4,3) = A002884(4)/(A002884(2)^2*2!) = 280.
-
dsd2[n_, signature_] := Product[2^n - 2^i, {i, 0, n - 1}]/ Product[Product[2^k - 2^i, {i, 0, k - 1}]^signature[[k]]*signature[[k]]!, {k, 1, n}];Table[Map[dsd2[n, #] &,Map[Table[Count[#, i], {i, 1, n}] &, IntegerPartitions[n]]], {n, 0,6}] // Grid
Showing 1-8 of 8 results.
Comments