cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270994 a(n) = 9454129 + 11184810*n.

Original entry on oeis.org

9454129, 20638939, 31823749, 43008559, 54193369, 65378179, 76562989, 87747799, 98932609, 110117419, 121302229, 132487039, 143671849, 154856659, 166041469, 177226279, 188411089, 199595899, 210780709, 221965519, 233150329, 244335139, 255519949, 266704759, 277889569, 289074379, 300259189
Offset: 0

Views

Author

Altug Alkan, Mar 28 2016

Keywords

Comments

See A270971 for the motivation.
These are all Sierpiński numbers.
Since 9454129 is a term of A244561, for every integer k > 0, 9454129*2^k + 1 has a divisor in the set {3, 5, 7, 13, 17, 241}. And because 11184810 = 2*3*5*7*13*17*241, a(n)*2^k + 1 = 9454129*2^k + 1 + 11184810*n*2^k + 1 always has a divisor in the set {3, 5, 7, 13, 17, 241}. Since a(n) is always odd because of its definition, a(n) is a Sierpiński number.
Also 9454129 + 28 = 9454157 is a term of A244561. So, with the same proof, a(n) + 28 is a Sierpiński number too.
Are a(n) and a(n) + 28 always consecutive Sierpiński numbers?

Examples

			a(1) = 9454129 + 11184810*1 = 20638939.
		

Crossrefs

Programs

  • Magma
    [9454129 + 11184810*n: n in [0..30]]; // Vincenzo Librandi, Mar 29 2016
    
  • Maple
    A270994:=n->9454129 + 11184810*n: seq(A270994(n), n=0..40); # Wesley Ivan Hurt, Apr 02 2016
  • Mathematica
    Table[9454129 + 11184810*n, {n, 0, 100}] (* G. C. Greubel, Mar 28 2016 *)
  • PARI
    a(n) = 9454129 + 11184810*n;
    
  • PARI
    x='x+O('x^99); Vec((9454129+1730681*x)/(1-x)^2)
    
  • Python
    for n in range(0,100):print(9454129+11184810*n) # Soumil Mandal, Apr 03 2016

Formula

G.f.: (9454129 + 1730681*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 1.