A271208 a(n) = n^5 + n - 1.
-1, 1, 33, 245, 1027, 3129, 7781, 16813, 32775, 59057, 100009, 161061, 248843, 371305, 537837, 759389, 1048591, 1419873, 1889585, 2476117, 3200019, 4084121, 5153653, 6436365, 7962647, 9765649, 11881401, 14348933, 17210395, 20511177, 24300029, 28629181, 33554463
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n^5+n-1: n in [0..100]];
-
Maple
A271208:=n->n^5 + n - 1: seq(A271208(n), n=0..40); # Wesley Ivan Hurt, Apr 02 2016
-
Mathematica
Table[n^5+n-1, {n, 0, 100}] (* Waldemar Puszkarz, Apr 02 2016 *) LinearRecurrence[{6,-15,20,-15,6,-1},{-1,1,33,245,1027,3129},40] (* Harvey P. Dale, Sep 02 2020 *)
-
PARI
for(n=0, 100, print1(n^5+n-1, ", ")) \\ Waldemar Puszkarz, Apr 02 2016
Formula
a(n) = A271209(n) - 2.
From Wesley Ivan Hurt, Apr 02 2016: (Start)
G.f.: (-1 + 7*x + 12*x^2 + 82*x^3 + 17*x^4 + 3*x^5) / (x-1)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5)- a (n-6), n > 5. (End)
a(n) = A131471(n) - 1. - Omar E. Pol, Apr 05 2016