A271346 Numbers k such that the final digit of k^k is 6.
4, 6, 8, 12, 14, 16, 24, 26, 28, 32, 34, 36, 44, 46, 48, 52, 54, 56, 64, 66, 68, 72, 74, 76, 84, 86, 88, 92, 94, 96, 104, 106, 108, 112, 114, 116, 124, 126, 128, 132, 134, 136, 144, 146, 148, 152, 154, 156, 164, 166, 168, 172, 174, 176, 184, 186, 188, 192, 194
Offset: 1
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
Magma
I:=[4,6,8,12,14,16,24]; [n le 7 select I[n] else Self(n-1)+Self(n-6)-Self(n-7): n in [1..60]]; // Vincenzo Librandi, Oct 09 2017
-
Maple
A271346:=n->`if`(n^n mod 10 = 6, n, NULL): seq(A271346(n), n=1..500);
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {4, 6, 8, 12, 14, 16, 24},59] (* Ray Chandler, Mar 08 2017 *)
-
PARI
is(n) = Mod(n, 10)^n==6 \\ Felix Fröhlich, Apr 07 2016
-
PARI
Vec(2*x*(1 + x^2)*(2 + x - x^2 + x^3 + 2*x^4) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) + O(x^59)) \\ Colin Barker, Dec 13 2018
Formula
a(n) = a(n-1) + a(n-6) - a(n-7) for n > 7. - Wesley Ivan Hurt, Oct 08 2017
G.f.: 2*x*(1 + x^2)*(2 + x - x^2 + x^3 + 2*x^4) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)). - Colin Barker, Dec 13 2018
Comments