cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271636 a(n) = 4*n*(4*n^2 + 3).

Original entry on oeis.org

0, 28, 152, 468, 1072, 2060, 3528, 5572, 8288, 11772, 16120, 21428, 27792, 35308, 44072, 54180, 65728, 78812, 93528, 109972, 128240, 148428, 170632, 194948, 221472, 250300, 281528, 315252, 351568, 390572, 432360, 477028, 524672, 575388, 629272, 686420
Offset: 0

Views

Author

Vincenzo Librandi, Apr 11 2016

Keywords

Comments

This is the case h=0 of the identity 4*n*(4*n^2 + 3*(2*h + 1)^2) = (2*n - 2*h - 1)^3 + (2*n + 2*h + 1)^3.
Subsequence of A004999 and, after 0, second bisection of A153976.

Crossrefs

Programs

  • Magma
    [4*n*(4*n^2+3): n in [0..50]];
    
  • Mathematica
    Table[4 n (4 n^2 + 3), {n, 0, 50}]
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(28+40*x+28*x^2)/(1-x)^4)) \\ Altug Alkan, Apr 11 2016
    
  • Python
    for n in range(0,1000):print(4*n*(4*n**2+3)) # Soumil Mandal, Apr 11 2016

Formula

O.g.f.: 4*x*(7 + 10*x + 7*x^2)/(1 - x)^4.
E.g.f.: 4*x*(7 + 12*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, Apr 11 2016
a(n) = -a(-n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 4*A229183(2*n). - Bruno Berselli, Apr 11 2016

Extensions

Edit and extended by Bruno Berselli, Apr 12 2016