cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271723 Numbers k such that 3*k - 8 is a square.

Original entry on oeis.org

3, 4, 8, 11, 19, 24, 36, 43, 59, 68, 88, 99, 123, 136, 164, 179, 211, 228, 264, 283, 323, 344, 388, 411, 459, 484, 536, 563, 619, 648, 708, 739, 803, 836, 904, 939, 1011, 1048, 1124, 1163, 1243, 1284, 1368, 1411, 1499, 1544, 1636, 1683, 1779, 1828, 1928, 1979, 2083, 2136, 2244, 2299
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 13 2016

Keywords

Comments

Square roots of resulting squares gives A001651. - Ray Chandler, Apr 14 2016

Examples

			a(1) = 3 because 3*3 - 8 = 1^2.
		

Crossrefs

Cf. A001651.
Cf. numbers n such that 3*n + k is a square: this sequence (k=-8), A120328 (k=-6), A271713 (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), A271675 (k=4), A100536 (k=6), A271741 (k=7), A067725 (k=9).

Programs

  • Magma
    [n: n in [1..2400] | IsSquare(3*n-8)];
    
  • Maple
    seq(seq(((3*m+k)^2+8)/3, k=1..2),m=0..50); # Robert Israel, Dec 05 2016
  • Mathematica
    Select[Range@ 2400, IntegerQ@ Sqrt[3 # - 8] &] (* Bruno Berselli, Apr 14 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{3,4,8,11,19},60] (* Harvey P. Dale, Oct 02 2020 *)
  • Python
    from gmpy2 import is_square
    [n for n in range(3000) if is_square(3*n-8)] # Bruno Berselli, Dec 05 2016
    
  • Python
    [(6*(n-1)*n-(2*n-1)*(-1)**n+23)/8 for n in range(1, 60)] # Bruno Berselli, Dec 05 2016

Formula

From Ilya Gutkovskiy, Apr 13 2016: (Start)
G.f.: x*(3 + x - 2*x^2 + x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2).
a(n) = (6*(n - 1)*n - (2*n - 1)*(-1)^n + 23)/8. (End)