A271937 a(n) = (7/4)*n^2 + (5/2)*n + (7 + (-1)^n)/8.
1, 5, 13, 24, 39, 57, 79, 104, 133, 165, 201, 240, 283, 329, 379, 432, 489, 549, 613, 680, 751, 825, 903, 984, 1069, 1157, 1249, 1344, 1443, 1545, 1651, 1760, 1873, 1989, 2109, 2232, 2359, 2489, 2623, 2760, 2901, 3045, 3193, 3344, 3499, 3657, 3819, 3984, 4153
Offset: 0
Examples
a(1) = 5; the 5 partitions are: {3,2}; {3,1,1}; {2,2,1}; {2,1,1,1}; {1,1,1,1,1}. a(3) = 24: floor(8/2) + floor(11/2) + floor(14/2) + floor(17/2) = 4+5+7+8 = 24.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Examples of Ehrhart Quasi-Polynomials.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[(7/4)*n^2+(5/2)*n+(7+(-1)^n)/8: n in [0..50]];
-
Mathematica
Table[(7/4) n^2 + (5/2) n + (7 + (-1)^n)/8, {n, 0, 50}] LinearRecurrence[{2,0,-2,1},{1,5,13,24},50] (* Harvey P. Dale, Mar 23 2025 *)
-
PARI
Vec((1+3*x+3*x^2)/((1-x)^3*(1+x)) + O(x^99)) \\ Altug Alkan, Sep 10 2016
Formula
O.g.f.: (1 + 3*x + 3*x^2)/((1 - x)^3*(1 + x)).
E.g.f.: (7 + 34*x + 14*x^2)*exp(x)/8 + exp(-x)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(2*k) = k*(7*k + 5) + 1, a(2*k+1) = (k + 1)*(7*k + 5).
From Bob Selcoe, Sep 10 2016 (Start):
a(n) = (n+1)^2 + A006578(n).
a(n) = a(n-1) + A047346(n+1).
a(n) = Sum_{j=0..n} floor((2n+3j+2)/2).
(End)
Extensions
Edited and extended by Bruno Berselli, Apr 20 2016
Comments