A272027 a(n) = 3*sigma(n).
3, 9, 12, 21, 18, 36, 24, 45, 39, 54, 36, 84, 42, 72, 72, 93, 54, 117, 60, 126, 96, 108, 72, 180, 93, 126, 120, 168, 90, 216, 96, 189, 144, 162, 144, 273, 114, 180, 168, 270, 126, 288, 132, 252, 234, 216, 144, 372, 171, 279, 216, 294, 162, 360, 216, 360, 240, 270, 180, 504, 186, 288, 312, 381
Offset: 1
Links
Crossrefs
Programs
-
Magma
[3*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019
-
Maple
with(numtheory): seq(3*sigma(n), n=1..64);
-
Mathematica
Table[3 DivisorSigma[1, n], {n, 64}] (* Michael De Vlieger, Apr 19 2016 *)
-
PARI
a(n) = 3 * sigma(n);
Formula
Dirichlet g.f.: 3*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016
a(n) = A274536(n)/2. - Antti Karttunen, Nov 16 2017
From Omar E. Pol, Oct 02 2018: (Start)
Conjecture 1: a(n) = sigma(2*n) = A062731(n) iff n is odd.
And more generally:
Conjecture 2: If p is prime then (p + 1)*sigma(n) = sigma(p*n) iff n is not a multiple of p. (End)
The above claims easily follow from the fact that sigma is multiplicative function, thus if p does not divide n, then sigma(p*n) = sigma(p)*sigma(n). - Antti Karttunen, Nov 21 2019
Comments